Skip to main content

Vessel Destination Prediction Using a Graph-Based Machine Learning Model

  • Conference paper
  • First Online:
Network Science (NetSci-X 2022)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 13197))

Included in the following conference series:

Abstract

As the world’s population continues to expand, maritime transport is critical to ensure economic growth. To improve security and safety of maritime transportation, the Automatic Identification System (AIS) collects real-time data about vessels and their positions. While a large portion of the AIS data is provided via an automatic tracking system, some key fields, such as destination and draught, are entered manually by the ship navigator and are thus prone to errors. To support decision making in maritime industries, in this paper we propose a data-driven vessel destination prediction algorithm based on heterogeneous graph and machine learning models. We design the task as a multi-class classification problem, where the destination port is the category to be predicted given the vessel and origin information. Then, we use a link prediction model in a weighted heterogeneous graph to predict the vessel destination. Experimental comparison against baseline methods, such as logistic regression and k-nearest neighbors, showed that our model provides a robust performance, outperforming the baseline algorithms by 9% and 33% in terms of accuracy and F1-score, respectively. Thus, heterogeneous graph models provide a powerful alternative to predict port destination, and could support enhancing AIS data quality and better decision making in maritime transportation industries.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. AISM: IALA guidelines on the universal automatic identification system (2002). https://ucakikazlambasi.com.tr/wp-content/uploads/2017/04/iala-guidelines.pdf. Accessed 8 Jan 2022

  2. Bailey, N.J.: Training, technology and AIS: looking beyond the box. In: SIRC Symposium 2005, Seafarers International Research Centre (SIRC), pp. 108–128 (2005)

    Google Scholar 

  3. Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)

    Article  MATH  Google Scholar 

  4. Bye, R., Almklov, P.G.: Normalization of maritime accident data using AIS. Marine Policy (2019)

    Google Scholar 

  5. Cai, M., Zhang, J., Zhang, D., Yuan, X., Soares, C.G.: Collision risk analysis on ferry ships in Jiangsu section of the Yangtze river based on AIS data. Reliab. Eng. Syst. Safety 215, 107901 (2021)

    Google Scholar 

  6. Carlini, E., de Lira, V.M., JĂşnior, A.S., Etemad, M., Machado, B.B., Matwin, S.: Uncovering vessel movement patterns from AIS data with graph evolution analysis. In: EDBT/ICDT Workshops (2020)

    Google Scholar 

  7. Chen, X., et al.: Ship trajectory reconstruction from AIS sensory data via data quality control and prediction. Math. Probl. Eng. 2020 (2020)

    Google Scholar 

  8. Chopde, N.R., Nichat, M.: Landmark based shortest path detection by using a* and haversine formula. Int. J. Innov. Res. Comput. Commun. Eng. 1(2), 298–302 (2013)

    Google Scholar 

  9. Chung, J., Gulcehre, C., Cho, K., Bengio, Y.: Empirical evaluation of gated recurrent neural networks on sequence modeling. arXiv preprint arXiv:1412.3555 (2014)

  10. Cunningham, P., Delany, S.J.: k-nearest neighbour classifiers: (with python examples). arXiv preprint arXiv:2004.04523 (2020)

  11. Data61, C.: Stellargraph machine learning library. Publication Title: GitHub Repository. GitHub (2018)

    Google Scholar 

  12. Dong, Y., Chawla, N.V., Swami, A.: metapath2vec: scalable representation learning for heterogeneous networks. In: Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 135–144 (2017)

    Google Scholar 

  13. Elman, J.L.: Finding structure in time. Cogn. Sci. 14(2), 179–211 (1990)

    Article  Google Scholar 

  14. Ester, M., Kriegel, H.P., Sander, J., Xu, X., et al.: A density-based algorithm for discovering clusters in large spatial databases with noise. In: KDD (1996)

    Google Scholar 

  15. Goodfellow, I., et al.: Generative adversarial nets. Adv. Neural Inf. Process. Syst. 27 (2014)

    Google Scholar 

  16. Harati-Mokhtari, A., Wall, A., Brooks, P., Wang, J.: Automatic identification system (AIS): data reliability and human error implications. J. Navig. 60(3), 373–389 (2007)

    Article  Google Scholar 

  17. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)

    Article  Google Scholar 

  18. Hu, Y., Park, G.K.: Collision risk assessment based on the vulnerability of marine accidents using fuzzy logic. Int. J. Naval Archit. Ocean Eng. 12, 541–551 (2020)

    Article  Google Scholar 

  19. Ifrim, C., Wallace, M., Poulopoulos, V., Mourti, A.: Methods and techniques for automatic identification system data reduction. In: Pop, F., Neagu, G. (eds.) Big Data Platforms and Applications. CCN, pp. 253–269. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-38836-2_12

    Chapter  Google Scholar 

  20. IMO: AIS transponder (2020). https://www.imo.org/en/OurWork/Safety/Pages/AIS.aspx. Accessed 11 Dec 2021

  21. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:1609.02907 (2016)

  22. Kisialiou, Y., Gribkovskaia, I., Laporte, G.: Robust supply vessel routing and scheduling. Transp. Res. Part C: Emerg. Technol. 90, 366–378 (2018)

    Google Scholar 

  23. Li, B., Lu, J., Lu, H., Li, J.: Predicting maritime accident consequence scenarios for emergency response decisions using optimization-based decision tree approach. Marit. Policy Manage. 1–23 (2021)

    Google Scholar 

  24. Lin, C.X., Huang, T.W., Guo, G., Wong, M.D.: MtDetector: a high-performance marine traffic detector at stream scale. In: Proceedings of the 12th ACM International Conference on Distributed and Event-Based Systems (2018)

    Google Scholar 

  25. Ma, S., Liu, S., Meng, X.: Optimized BP neural network algorithm for predicting ship trajectory. In: 2020 IEEE 4th Information Technology, Networking, Electronic and Automation Control Conference (ITNEC), vol. 1, pp. 525–532. IEEE (2020)

    Google Scholar 

  26. Magnussen, B.B., Bläser, N., Jensen, R.M., Ylänen, K.: Destination prediction of oil tankers using graph abstractions and recurrent neural networks. In: Mes, M., Lalla-Ruiz, E., Voß, S. (eds.) ICCL 2021. LNCS, vol. 13004, pp. 51–65. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87672-2_4

    Chapter  Google Scholar 

  27. Mestl, T., Dausendschön, K.: Port eta prediction based on AIS data. In: 15th International Conference on Computer and IT Applications in the Maritime Industries, Lecce, pp. 9–11 (2016)

    Google Scholar 

  28. Metapath2Vec: Link prediction with metapath2vec (2019). https://stellargraph.readthedocs.io/en/stable/demos/link-prediction/metapath2vec-link-prediction.html. Accessed 10 Jan 2022

  29. Mieczyńska, M., Czarnowski, I.: K-means clustering for SAT-AIS data analysis. WMU J. Marit. Aff. 20(3), 377–400 (2021)

    Article  Google Scholar 

  30. Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 (2013)

  31. Prokhorenkova, L., Gusev, G., Vorobev, A., Dorogush, A.V., Gulin, A.: CatBoost: unbiased boosting with categorical features. arXiv:1706.09516 (2017)

  32. Stogiannos, M., Papadimitrakis, M., Sarimveis, H., Alexandridis, A.: Vessel trajectory prediction using radial basis function neural networks. In: IEEE EUROCON 2021–19th International Conference on Smart Technologies. IEEE (2021)

    Google Scholar 

  33. Suo, Y., Chen, W., Claramunt, C., Yang, S.: A ship trajectory prediction framework based on a recurrent neural network. Sensors 20(18), 5133 (2020)

    Article  Google Scholar 

  34. Tu, E., Zhang, G., Mao, S., Rachmawati, L., Huang, G.: Modeling historical AIS data for vessel path prediction: a comprehensive treatment. CoRR abs/2001.01592 (2020). http://arxiv.org/abs/2001.01592

  35. UN: Global issues (2019). https://www.un.org/en/global-issues/population

  36. Veličković, P., Cucurull, G., Casanova, A., Romero, A., Lio, P., Bengio, Y.: Graph attention networks. arXiv preprint arXiv:1710.10903 (2017)

  37. Wang, C., Fu, Y.: Ship trajectory prediction based on attention in bidirectional recurrent neural networks. In: 2020 5th International Conference on Information Science, Computer Technology and Transportation (ISCTT). IEEE (2020)

    Google Scholar 

  38. Wang, S., He, Z.: A prediction model of vessel trajectory based on generative adversarial network. J. Navig. 74, 1–11 (2021)

    Google Scholar 

  39. Wang, W., Zhang, C., Guillaume, F., Halldearn, R., Kristensen, T.S., Liu, Z.: From AIS data to vessel destination through prediction with machine learning techniques. Artif. Intell. Models, Algor. Appl. 1 (2021)

    Google Scholar 

  40. WPI: (2019). https://msi.nga.mil/Publications/WPI. Accessed 13 Nov 2021

  41. Wright, R.E.: Logistic regression. In: Reading and Understanding Multivariate Statistics, pp. 217–244. American Psychological Association (1995)

    Google Scholar 

  42. Wu, L., Xu, Y., Wang, F.: Identifying port calls of ships by uncertain reasoning with trajectory data. ISPRS Int. J. Geo-Inf. 9, 756 (2020)

    Google Scholar 

  43. Xiao, F., Ligteringen, H., Van Gulijk, C., Ale, B.: Comparison study on AIS data of ship traffic behavior. Ocean Eng. 95, 84–93 (2015)

    Article  Google Scholar 

  44. Yang, D., Wu, L., Wang, S.: Can we trust the AIS destination port information for bulk ships?-Implications for shipping policy and practice. Transp. Res. Part E: Logistics Transp. Rev. 149, 102308 (2021)

    Google Scholar 

  45. Yang, D., Wu, L., Wang, S., Jia, H., Li, K.X.: How big data enriches maritime research-a critical review of automatic identification system (AIS) data applications. Transp. Rev. 39(6), 755–773 (2019)

    Article  Google Scholar 

  46. Zhang, C., et al.: AIS data driven general vessel destination prediction: a random forest based approach. Transp. Res. Part C: Emerg. Technol. 118, 102729 (2020)

    Google Scholar 

  47. Zhang, T., Liu, C., Wen, B.: Abnormal ship behavior detection after the closure of AIS based on radar data (2021). https://doi.org/10.21203/rs.3.rs-551597/v1

  48. Zhang, Z., Suo, Y., Yang, S., Zhao, Z.: Detection of complex abnormal ship behavior based on event stream. In: 2020 Chinese Automation Congress (CAC), pp. 5730–5735 (2020). https://doi.org/10.1109/CAC51589.2020.9327793

  49. Zhao, L., Shi, G., Yang, J.: Ship trajectories pre-processing based on AIS data. J. Navig. 71(5), 1210–1230 (2018)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Douglas Teodoro .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gouareb, R., Can, F., Ferdowsi, S., Teodoro, D. (2022). Vessel Destination Prediction Using a Graph-Based Machine Learning Model. In: Ribeiro, P., Silva, F., Mendes, J.F., Laureano, R. (eds) Network Science. NetSci-X 2022. Lecture Notes in Computer Science(), vol 13197. Springer, Cham. https://doi.org/10.1007/978-3-030-97240-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-97240-0_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-97239-4

  • Online ISBN: 978-3-030-97240-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics