Skip to main content

Deep Topological Embedding with Convolutional Neural Networks for Complex Network Classification

  • Conference paper
  • First Online:
Network Science (NetSci-X 2022)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 13197))

Included in the following conference series:

  • 541 Accesses

Abstract

The classification of complex networks allows us to compare sets of networks based on their topological characteristics. By being able to compare sets of known networks to unknown ones, we can analyze real-world complex systems such as neural pathways, traffic flow, and social relations. However, most network-classification methods rely on vertex-level measures or they characterize single fixed-structure networks. Also, these approaches can be computationally costly when analyzing a large number of networks, as they need to learn the network embeds. To address these issues, we propose a hand-crafted embedding method called Deep Topological Embedding (DTE) that builds multidimensional and deep embeddings from networks, based on the joint distribution of vertex centrality, that combined represents the global structure of the network. The DTE can be approached as a two or three-dimensional visual representation of complex networks. In this sense, we present a convolutional architecture to classify DTE representations of different topological models. Our method achieves improved classification accuracy compared to related methods when tested on three benchmarks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://networkx.org/documentation/networkx-2.4/.

References

  1. Banerjee, A., Jost, J.: Spectral plot properties: towards a qualitative classification of networks. Netw. Heterogen. Media 3(2), 395 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  2. Barabási, A.L.: Network Science. Cambridge University Press, Cambridge (2016)

    Google Scholar 

  3. Barabási, A.L., Albert, R.: Emergence of scaling in random networks. Science 286(5439), 509–512 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bonacich, P.: Power and centrality: a family of measures. Am. J. Sociol. 92(5), 1170–1182 (1987)

    Article  Google Scholar 

  5. Brandes, U., Fleischer, D.: Centrality measures based on current flow. In: Diekert, V., Durand, B. (eds.) STACS 2005. LNCS, vol. 3404, pp. 533–544. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-31856-9_44

    Chapter  Google Scholar 

  6. Bronstein, M.M., Bruna, J., LeCun, Y., Szlam, A., Vandergheynst, P.: Geometric deep learning: going beyond Euclidean data. IEEE Sig. Process. Mag. 34(4), 18–42 (2017)

    Article  Google Scholar 

  7. Costa, L.F., Rodrigues, F.A., Travieso, G., Villas Boas, P.R.: Characterization of complex networks: a survey of measurements. Adv. Phys. 56(1), 167–242 (2007)

    Article  Google Scholar 

  8. Dorogovtsev, S.N., Mendes, J.F.: Evolution of networks. Adv. Phys. 51(4), 1079–1187 (2002)

    Article  Google Scholar 

  9. Estrada, E., Rodriguez-Velazquez, J.A.: Subgraph centrality in complex networks. Phys. Rev. E 71(5), 056103 (2005)

    Article  MathSciNet  Google Scholar 

  10. Glorot, X., Bengio, Y.: Understanding the difficulty of training deep feedforward neural networks. In: International Conference on Artificial Intelligence and Statistics, pp. 249–256 (2010)

    Google Scholar 

  11. Glorot, X., Bordes, A., Bengio, Y.: Deep sparse rectifier neural networks. In: International Conference on Artificial Intelligence and Statistics, pp. 315–323 (2011)

    Google Scholar 

  12. Hagberg, A., Swart, P., S Chult, D.: Exploring network structure, dynamics, and function using networkX. Technical report, Los Alamos National Lab. (LANL), Los Alamos, NM (United States) (2008)

    Google Scholar 

  13. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:1609.02907 (2016)

  14. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, pp. 1097–1105 (2012)

    Google Scholar 

  15. Lin, M., Chen, Q., Yan, S.: Network in network. arXiv preprint arXiv:1312.4400 (2013)

  16. Liu, C., Wu, X., Niu, R., Wu, X., Fan, R.: A new SAIR model on complex networks for analysing the 2019 novel coronavirus (COVID-19). Nonlinear Dyn. 101(3), 1777–1787 (2020)

    Article  Google Scholar 

  17. Machicao, J., Corrêa, E.A., Jr., Miranda, G.H., Amancio, D.R., Bruno, O.M.: Authorship attribution based on Life-Like Network Automata. PLoS ONE 13(3), e0193703 (2018)

    Article  Google Scholar 

  18. Miranda, G.H.B., Machicao, J., Bruno, O.M.: Exploring spatio-temporal dynamics of cellular automata for pattern recognition in networks. Sci. Rep. 6, 37329 (2016)

    Article  Google Scholar 

  19. Najafabadi, M.M., Villanustre, F., Khoshgoftaar, T.M., Seliya, N., Wald, R., Muharemagic, E.: Deep learning applications and challenges in big data analytics. J. Big Data 2(1), 1–21 (2015). https://doi.org/10.1186/s40537-014-0007-7

    Article  Google Scholar 

  20. Oliveira, M., Ribeiro, E., Bastos-Filho, C., Menezes, R.: Spatio-temporal variations in the urban rhythm: the travelling waves of crime. EPJ Data Sci. 7(1), 29 (2018). https://doi.org/10.1140/epjds/s13688-018-0158-4

    Article  Google Scholar 

  21. Perozzi, B., Al-Rfou, R., Skiena, S.: DeepWalk: online learning of social representations. In: Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 701–710. ACM (2014)

    Google Scholar 

  22. Ribas, L.C., Machicao, J., Bruno, O.M.: Life-Like Network Automata descriptor based on binary patterns for network classification. Inf. Sci. 515, 156–168 (2020)

    Article  MATH  Google Scholar 

  23. Rubinov, M., Sporns, O.: Complex network measures of brain connectivity: uses and interpretations. Neuroimage 52(3), 1059–1069 (2010)

    Article  Google Scholar 

  24. Scabini, L.F., Condori, R.H., Gonçalves, W.N., Bruno, O.M.: Multilayer complex network descriptors for color-texture characterization. Inf. Sci. 491, 30–47 (2019)

    Article  MathSciNet  Google Scholar 

  25. Scabini, L.F., Ribas, L.C., Neiva, M.B., Junior, A.G., Farfán, A.J., Bruno, O.M.: Social interaction layers in complex networks for the dynamical epidemic modeling of COVID-19 in Brazil. Phys. A Stat. Mech. Appl. 564, 125498 (2020)

    Article  Google Scholar 

  26. Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The graph neural network model. IEEE Trans. Neural Netw. 20(1), 61–80 (2008)

    Article  Google Scholar 

  27. Sutskever, I., Martens, J., Dahl, G., Hinton, G.: On the importance of initialization and momentum in deep learning. In: International Conference on Machine Learning, pp. 1139–1147 (2013)

    Google Scholar 

  28. Watts, D.J., Strogatz, S.H.: Collective dynamics of ‘small-world’ networks. Nature 393(6684), 440–442 (1998)

    Article  MATH  Google Scholar 

  29. Xin, R., Zhang, J., Shao, Y.: Complex network classification with convolutional neural network. Tsinghua Sci. Technol. 25(4), 447–457 (2020)

    Article  Google Scholar 

Download references

Acknowledgments

L. Scabini and L. C. Ribas acknowledge support from FAPESP (grants #2019/07811-0, #2021/09163-6, and #2016/23763-8). O. M. Bruno acknowledges support from CNPq (Grant #307897/2018-4) and FAPESP (grants #2014/08026-1 and 2016/18809-9). The authors are also grateful to the NVIDIA GPU Grant Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leonardo Scabini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Scabini, L., Ribas, L., Ribeiro, E., Bruno, O. (2022). Deep Topological Embedding with Convolutional Neural Networks for Complex Network Classification. In: Ribeiro, P., Silva, F., Mendes, J.F., Laureano, R. (eds) Network Science. NetSci-X 2022. Lecture Notes in Computer Science(), vol 13197. Springer, Cham. https://doi.org/10.1007/978-3-030-97240-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-97240-0_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-97239-4

  • Online ISBN: 978-3-030-97240-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics