Skip to main content

On the Number of Edges of the Fréchet Mean and Median Graphs

  • Conference paper
  • First Online:
Network Science (NetSci-X 2022)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 13197))

Included in the following conference series:

  • 477 Accesses

Abstract

The availability of large datasets composed of graphs creates an unprecedented need to invent novel tools in statistical learning for graph-valued random variables. To characterize the average of a sample of graphs, one can compute the sample Frechet mean and median graphs. In this paper, we address the following foundational question: does a mean or median graph inherit the structural properties of the graphs in the sample? An important graph property is the edge density; we establish that edge density is an hereditary property, which can be transmitted from a graph sample to its sample Frechet mean or median graphs, irrespective of the method used to estimate the mean or the median. Because of the prominence of the Frechet mean in graph-valued machine learning, this novel theoretical result has some significant practical consequences.

This work was supported by the National Science Foundation, CCF/CIF 1815971.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Banks, D., Constantine, G.: Metric models for random graphs. J. Classif. 15(2), 199–223 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bapat, R.B.: Graphs and Matrices. UTX, vol. 27. Springer, London (2010). https://doi.org/10.1007/978-1-84882-981-7

  3. Bollobás, B., Janson, S., Riordan, O.: The phase transition in inhomogeneous random graphs. Random Struct. Algorithms 31(1), 3–122 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  4. Devroye, L., Györfi, L., Lugosi, G.: A Probabilistic Theory of Pattern Recognition, vol. 31. Springer Science & Business Media (2013)

    Google Scholar 

  5. Donnat, C., Holmes, S.: Tracking network dynamics: a survey using graph distances. Ann. Appl. Stat. 12(2), 971–1012 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  6. Fréchet, M.: Les espaces abstraits et leur utilité en statistique théorique et même en statistique appliquée. Journal de la Société Française de Statistique 88, 410–421 (1947)

    MATH  Google Scholar 

  7. Ginestet, C.E., Li, J., Balachandran, P., Rosenberg, S., Kolaczyk, E.D.: Hypothesis testing for network data in functional neuroimaging. Ann. Appl. Stat. 11(2), 725–750 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  8. Han, F., Han, X., Liu, H., Caffo, B., et al.: Sparse median graphs estimation in a high-dimensional semiparametric model. Ann. App. Stat. 10(3), 1397–1426 (2016)

    MathSciNet  MATH  Google Scholar 

  9. Jain, B.J.: On the geometry of graph spaces. Discret. Appl. Math. 214, 126–144 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  10. Jain, B.J., Obermayer, K.: Learning in Riemannian orbifolds. arXiv preprint arXiv:1204.4294 (2012)

  11. Johnson, C.R., Marijuán, C., Paparella, P., Pisonero, M.: The NIEP. In: Operator Theory, Operator Algebras, and Matrix Theory. OTAA, vol. 267, pp. 199–220. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-72449-2_10

  12. Knudsen, C., McDonald, J.: A note on the convexity of the realizable set of eigenvalues for nonnegative symmetric matrices. Electron. J. Linear Algebra 8, 110–114 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  13. Kolaczyk, E.D., Lin, L., Rosenberg, S., Walters, J., Xu, J., et al.: Averages of unlabeled networks: geometric characterization and asymptotic behavior. Ann. Stat. 48(1), 514–538 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  14. Lunagómez, S., Olhede, S.C., Wolfe, P.J.: Modeling network populations via graph distances. J. Am. Stat. Assoc. 116(536), 2023–2040 (2021)

    Google Scholar 

  15. Meyer, F.G.: The Fréchet mean of inhomogeneous random graphs. In: Benito, R.M., Cherifi, C., Cherifi, H., Moro, E., Rocha, L.M., Sales-Pardo, M. (eds.) COMPLEX NETWORKS 2021. SCI, vol. 1015, pp. 207–219. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-93409-5_18

  16. Van Mieghem, P.: Graph Spectra for Complex Networks. Cambridge University Press, Cambridge (2010)

    Google Scholar 

  17. Wills, P., Meyer, F.G.: Metrics for graph comparison: a practitioner’s guide. PLOS ONE 15(2), 1–54 (2020). https://doi.org/10.1371/journal.pone.0228728

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to François G. Meyer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ferguson, D., Meyer, F.G. (2022). On the Number of Edges of the Fréchet Mean and Median Graphs. In: Ribeiro, P., Silva, F., Mendes, J.F., Laureano, R. (eds) Network Science. NetSci-X 2022. Lecture Notes in Computer Science(), vol 13197. Springer, Cham. https://doi.org/10.1007/978-3-030-97240-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-97240-0_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-97239-4

  • Online ISBN: 978-3-030-97240-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics