Skip to main content

HyperNetVec: Fast and Scalable Hierarchical Embedding for Hypergraphs

  • Conference paper
  • First Online:
Network Science (NetSci-X 2022)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 13197))

Included in the following conference series:

Abstract

Many problems such as node classification and link prediction in network data can be solved using graph embeddings. However, it is difficult to use graphs to capture non-binary relations such as communities of nodes. These kinds of complex relations are expressed more naturally as hypergraphs. While hypergraphs are a generalization of graphs, state-of-the-art graph embedding techniques are not adequate for solving prediction and classification tasks on large hypergraphs accurately in reasonable time. In this paper, we introduce HyperNetVec, a novel hierarchical framework for scalable unsupervised hypergraph embedding. HyperNetVec exploits shared-memory parallelism and is capable of generating high quality embeddings for real-world hypergraphs with millions of nodes and hyperedges in only a couple of minutes while existing hypergraph systems either fail for such large hypergraphs or may take days to produce the embeddings.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bengio, Y., Courville, A., Vincent, P.: Representation learning: a review and new perspectives. IEEE Trans. Pattern Anal. Mach. Intell. 35(8), 1798–1828 (2013). https://doi.org/10.1109/TPAMI.2013.50

    Article  Google Scholar 

  2. Bordes, A., Usunier, N., Garcia-Durán, A., Weston, J., Yakhnenko, O.: Translating embeddings for modeling multi-relational data. In: Proceedings of the 26th International Conference on Neural Information Processing Systems (2013)

    Google Scholar 

  3. Bui, T.N., Jones, C.: A heuristic for reducing fill-in in sparse matrix factorization. In: SIAM Conference on Parallel Processing for Scientific Computing, March 1993

    Google Scholar 

  4. Chen, H., Perozzi, B., Hu, Y., Skiena, S.: Harp: Hierarchical representation learning for networks (2017)

    Google Scholar 

  5. dataset, D.: citation dataset dblp. https://www.aminer.org/lab-datasets/citation/DBLP-citation-Jan8.tar.bz

  6. Deng, C., Zhao, Z., Wang, Y., Zhang, Z., Feng, Z.: Graphzoom: a multi-level spectral approach for accurate and scalable graph embedding (2020)

    Google Scholar 

  7. Devine, K.D., Boman, E.G., Heaphy, R.T., Bisseling, R.H., Catalyurek, U.V.: Parallel hypergraph partitioning for scientific computing. In: Proceedings of the 20th International Conference on Parallel and Distributed Processing (2006). http://dl.acm.org/citation.cfm?id=1898953.1899056

  8. FAERS: drug dataset. https://www.fda.gov/Drugs/

  9. Feng, Y., You, H., Zhang, Z., Ji, R., Gao, Y.: Hypergraph neural networks (2019)

    Google Scholar 

  10. Getoor, L.: Cora dataset. https://linqs.soe.ucsc.edu/data

  11. Giurgiu, M., et al.: CORUM: the comprehensive resource of mammalian protein complexes-2019. Nucl. Acids Res. (2019)

    Google Scholar 

  12. Grover, A.: High performance implementation of node2vec. https://github.com/snap-stanford/snap/tree/master/examples/node2vec

  13. Grover, A., Leskovec, J.: node2vec: Scalable feature learning for networks (2016)

    Google Scholar 

  14. Hamilton, W.L., Ying, R., Leskovec, J.: Inductive representation learning on large graphs (2018)

    Google Scholar 

  15. Harper, F.M., Konstan, J.A.: The Movielens datasets: history and context. ACM Trans. Interact. Intell. Syst. 5(4) (2015). https://doi.org/10.1145/2827872

  16. Karypis, G., Aggarwal, R., Kumar, V., Shekhar, S.: Multilevel hypergraph partitioning: applications in VLSI domain. IEEE Trans. Very Large Scale Integr. Syst. (1999)

    Google Scholar 

  17. Kirkland, S.: Two-mode networks exhibiting data loss. J. Complex Netw. 6(2), 297–316 (2017). https://doi.org/10.1093/comnet/cnx039

  18. Li, Q., Han, Z., Wu, X.M.: Deeper insights into graph convolutional networks for semi-supervised learning (2018)

    Google Scholar 

  19. Liang, J., Gurukar, S., Parthasarathy, S.: Mile: a multi-level framework for scalable graph embedding (2020)

    Google Scholar 

  20. Maleki, S., Agarwal, U., Burtscher, M., Pingali, K.: Bipart: a parallel and deterministic hypergraph partitioner. SIGPLAN Not. (2021). https://doi.org/10.1145/3437801.3441611

    Article  Google Scholar 

  21. Mateev, N., Pingali, K., Stodghill, P., Kotlyar, V.: Next-generation generic programming and its application to sparse matrix computations. In: Proceedings of the 14th International Conference on Supercomputing. ICS 2000, pp. 88–99. Association for Computing Machinery, New York (2000)

    Google Scholar 

  22. Perozzi, B., Al-Rfou, R., Skiena, S.: Deepwalk: online learning of social representations. In: Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. KDD 2014. ACM, New York (2014)

    Google Scholar 

  23. Pingali, K., et al.: The tao of parallelism in algorithms. In: PLDI 2011, pp. 12–25 (2011)

    Google Scholar 

  24. Piñero, J., et al.: The DisGeNET knowledge platform for disease genomics: 2019 update. Nucl. Acids Res. 48(D1), D845–D855 (2019)

    Google Scholar 

  25. Qiu, J., Dong, Y., Ma, H., Li, J., Wang, K., Tang, J.: Network embedding as matrix factorization. In: Proceedings of the Eleventh ACM International Conference on Web Search and Data Mining (2018). https://doi.org/10.1145/3159652.3159706

  26. Rogers, A., Pingali, K.: Compiling for distributed memory architectures. IEEE Trans. Parallel Distrib. Syst. 5(3), 281–298 (1994)

    Article  Google Scholar 

  27. Tang, J., Qu, M., Wang, M., Zhang, M., Yan, J., Mei, Q.: Line. In: Proceedings of the 24th International Conference on World Wide Web (2015)

    Google Scholar 

  28. Taubin, G.: A signal processing approach to fair surface design. In: Proceedings of the 22nd Annual Conference on Computer Graphics and Interactive Techniques (1995). https://doi.org/10.1145/218380.218473

  29. Tu, K., Cui, P., Wang, X., Wang, F., Zhu, W.: Structural deep embedding for hyper-networks (2018)

    Google Scholar 

  30. Xu, K., Hu, W., Leskovec, J., Jegelka, S.: How powerful are graph neural networks? (2019)

    Google Scholar 

  31. Yadati, N., Nimishakavi, M., Yadav, P., Nitin, V., Louis, A., Talukdar, P.: HyperGCN: a new method of training graph convolutional networks on hypergraphs (2019)

    Google Scholar 

  32. Yang, J., Leskovec, J.: Defining and evaluating network communities based on ground-truth (2012)

    Google Scholar 

  33. Zhang, M., Cui, Z., Jiang, S., Chen, Y.: Beyond link prediction: predicting hyperlinks in adjacency space. In: AAAI, pp. 4430–4437 (2018)

    Google Scholar 

  34. Zhang, R., Zou, Y., Ma, J.: Hyper-SAGNN: a self-attention based graph neural network for hypergraphs. In: International Conference on Learning Representations (ICLR) (2020)

    Google Scholar 

  35. Zheng, V.W., Cao, B., Zheng, Y., Xie, X., Yang, Q.: Collaborative filtering meets mobile recommendation: a user-centered approach. In: Proceedings of the Twenty-Fourth AAAI Conference on Artificial Intelligence (2010)

    Google Scholar 

  36. Zien, J.Y., Schlag, M.D.F., Chan, P.K.: Multilevel spectral hypergraph partitioning with arbitrary vertex sizes. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. (1999). https://doi.org/10.1109/43.784130

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sepideh Maleki .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Maleki, S., Saless, D., Wall, D.P., Pingali, K. (2022). HyperNetVec: Fast and Scalable Hierarchical Embedding for Hypergraphs. In: Ribeiro, P., Silva, F., Mendes, J.F., Laureano, R. (eds) Network Science. NetSci-X 2022. Lecture Notes in Computer Science(), vol 13197. Springer, Cham. https://doi.org/10.1007/978-3-030-97240-0_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-97240-0_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-97239-4

  • Online ISBN: 978-3-030-97240-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics