Skip to main content

Competitive Information Spreading on Modular Networks

  • Conference paper
  • First Online:
Network Science (NetSci-X 2022)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 13197))

Included in the following conference series:

Abstract

Information spreading on social networks is one of the most important topics in network science and has long been actively studied. However, most studies only focus on the spread of a single piece of information on random networks, even though information spreading in the real world is much more complicated, involving a complex topology structure and interactions between multiple information. Therefore, in this paper, we model the competitive information spreading on modular networks and investigate how the community structure affects competitive information spreading in two spreading scenarios: sequential and simultaneous. In the sequential spreading scenario, we find that the community structure has little effect on the final prevalence but affects the spreading process (time evolution of the prevalence). In contrast, in the simultaneous spreading scenario, we find that community structure has a strong effect on not only the spreading process but also the final prevalence. Specifically, two competing pieces of information cannot coexist and one drives out the other on a non-modular network, whereas they can coexist in different communities on a modular network. Our results suggest that the effect of community structure cannot be ignored in the analysis of competitive spreading (especially, simultaneous spreading) of multiple information.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Goffman, W., Newill, V.: Generalization of epidemic theory. Nature 204(4955), 225–228 (1964)

    Article  Google Scholar 

  2. Bettencourt, L.M., Cintrón-Arias, A., Kaiser, D.I., Castillo-Chávez, C.: The power of a good idea: quantitative modeling of the spread of ideas from epidemiological models. Phys. A Stat. Mech. Appl. 364, 513–536 (2006)

    Article  Google Scholar 

  3. Anderson, R.M., May, R.M.: Infectious diseases of humans: dynamics and control. Oxford University Press, Oxford (1992)

    Google Scholar 

  4. Keeling, M.J., Rohani, P.: Modeling Infectious Diseases in Humans and Animals. Princeton University Press, Princeton (2011)

    Google Scholar 

  5. Watts, D.J.: A simple model of global cascades on random networks. In: The Structure and Dynamics of Networks, pp. 497–502. Princeton University Press (2011)

    Google Scholar 

  6. Granovetter, M.: Threshold models of collective behavior. Am. J. Sociol. 83(6), 1420–1443 (1978)

    Article  Google Scholar 

  7. Wang, W., Tang, M., Zhang, H.-F., Lai, Y.-C.: Dynamics of social contagions with memory of nonredundant information. Phys. Rev. E 92(1), 012820 (2015)

    Article  Google Scholar 

  8. Centola, D.: The spread of behavior in an online social network experiment. Science 329(5996), 1194–1197 (2010)

    Article  Google Scholar 

  9. Mønsted, B., Sapieżyński, P., Ferrara, E., Lehmann, S.: Evidence of complex contagion of information in social media: an experiment using twitter bots. PLoS ONE 12(9), e0184148 (2017)

    Article  Google Scholar 

  10. State, B., Adamic, L.: The diffusion of support in an online social movement: evidence from the adoption of equal-sign profile pictures. In: Proceedings of the 18th ACM Conference on Computer Supported Cooperative Work & Social Computing, pp. 1741–1750 (2015)

    Google Scholar 

  11. Karampourniotis, P.D., Sreenivasan, S., Szymanski, B.K., Korniss, G.: The impact of heterogeneous thresholds on social contagion with multiple initiators. PLoS ONE 10(11), e0143020 (2015)

    Google Scholar 

  12. Min, B., San Miguel, M.: Competing contagion processes: complex contagion triggered by simple contagion. Sci. Rep. 8(1), 1–8 (2018)

    Google Scholar 

  13. Newman, M.E., Strogatz, S.H., Watts, D.J.: Random graphs with arbitrary degree distributions and their applications. Phys. Rev. E 64(2), 026118 (2001)

    Article  Google Scholar 

  14. Galstyan, A., Cohen, P.: Cascading dynamics in modular networks. Phys. Rev. E 75(3), 036109 (2007)

    Article  Google Scholar 

  15. Gleeson, J.P.: Cascades on correlated and modular random networks. Phys. Rev. E 77(4), 046117 (2008)

    Google Scholar 

  16. Nematzadeh, A., Ferrara, E., Flammini, A., Ahn, Y.-Y.: Optimal network modularity for information diffusion. Phys. Rev. Lett. 113(8), 088701 (2014)

    Article  Google Scholar 

  17. Liu, Q.H., Zhong, L.F., Wang, W., Zhou, T., Eugene Stanley, H.: Interactive social contagions and co-infections on complex networks. Chaos Interdisc. J. Nonlinear Sci. 28(1), 013120 (2018)

    Google Scholar 

  18. Min, B., San Miguel, M.: Competition and dual users in complex contagion processes. Sci. Rep. 8(1), 1–8 (2018)

    Google Scholar 

  19. Gleeson, J.P., Cahalane, D.J.: Seed size strongly affects cascades on random networks. Phys. Rev. E 75(5), 056103 (2007)

    Google Scholar 

  20. Gleeson, J.P., Porter, M.A.: Message-passing methods for complex contagions. In: Lehmann, S., Ahn, Y.-Y. (eds.) Complex Spreading Phenomena in Social Systems. CSS, pp. 81–95. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-77332-2_5

    Chapter  Google Scholar 

  21. Hardin, G.: The competitive exclusion principle. Science 131(3409), 1292–1297 (1960)

    Article  Google Scholar 

  22. Amarasekare, P.: Competitive coexistence in spatially structured environments: a synthesis. Ecol. Lett. 6(12), 1109–1122 (2003)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Satoshi Furutani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Furutani, S., Shibahara, T., Akiyama, M., Aida, M. (2022). Competitive Information Spreading on Modular Networks. In: Ribeiro, P., Silva, F., Mendes, J.F., Laureano, R. (eds) Network Science. NetSci-X 2022. Lecture Notes in Computer Science(), vol 13197. Springer, Cham. https://doi.org/10.1007/978-3-030-97240-0_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-97240-0_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-97239-4

  • Online ISBN: 978-3-030-97240-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics