Skip to main content

Models of Virus Dynamics

  • Chapter
  • First Online:
COVID-19 Epidemiology and Virus Dynamics

Part of the book series: Understanding Complex Systems ((UCS))

  • 426 Accesses

Abstract

This chapter is about mechanistic, biophysical and biochemical processes of viral infectious diseases in the human body as seen from a nonlinear physics perspective. These processes can be described by a variety of nonlinear physics models. They apply to virus infections in general. Before reviewing some of the benchmark models, some facts and hypotheses about the SARS coronavirus 2 (SARS-CoV-2) that causes COVID-19 are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Virginia Department of Health. Epidemiological fact sheet: Coronaviruses, accessed 2021: https://www.vdh.virginia.gov/epidemiology/epidemiology--fact--sheets/coronaviruses/

  2. N. Zhu, D. Zhang, W. Wang, X. Li, B. Yang et al., A novel coronavirus from patients with pneumonia in China, 2019. New England Journal of Medicine 382, 727–733 (2020)

    Article  Google Scholar 

  3. Y. Jin, H. Yang, W. Ji, W. Wu, S. Chen, W. Zhang, G. Duan, Virology, epidemiology, pathogenesis, and control of COVID-19. Viruses 12:article 372 (2020)

    Google Scholar 

  4. World Health Organization. Health topics: severe acute respiratory syndrome (SARS). World Health Organization, https://www.who.int/health-topics/severe-acute-respiratory-syndrom, Accessed 2021

  5. Centers for Disease Control and Prevention, USA. CDC SARS Response timeline. Centers for Disease Control and Prevention, USA, https://www.cdc.gov/about/history/sars/timeline.htm, Accessed 2021

  6. J. Wallinga, P. Teunis, Different epidemic curves for severe acute respiratory syndrome reveal similar impacts of control measures. Am. J. Epidemiol. 160, 509–516 (2004)

    Article  Google Scholar 

  7. World Health Organization. Fact sheet: Middle East respiratory syndrome coronavirus (MERS-CoV). World Health Organization, https://www.who.int/news-room/fact-sheets/detail/middle-east-respiratory-syndrome-coronavirus-(mers-cov), Accessed 2021

  8. World Health Organization. Health topics: Middle East respiratory syndrome coronavirus (MERS-CoV). World Health Organization, https://www.who.int/health-topics/middle-east-respiratory-syndrome-coronavirus-mers, Accessed 2021

  9. World Health Organization. Naming the coronavirus disease (COVID-19) and the virus that causes it. Naming the coronavirus disease (COVID-19) and the virus that causes it, https://www.who.int/emergencies/diseases/novel-coronavirus-2019

  10. World Health Organization. Novel coronavirus (2019-nCoV) Situation Report-1, 21. Jan. 2020. Novel coronavirus (2019-nCoV) Situation Report-1, 21. Jan. 2020https://www.who.int/emergencies/diseases/novel-coronavirus-2019/situation-reports, 2020

  11. A.M. Baig, A. Khaleeq, U. Ali, H. Syeda, Evidence of the COVID-19 virus targeting the CNS: tissue distribution, host-virus interaction, and proposed neurotropic mechanisms. ACS Chem. Neurosci. 11, 995–998 (2020)

    Article  Google Scholar 

  12. B.L. Haagmans, T. Kuiken, B.E. Martina, R.A.M. Fouchier, G.F. Rimmelzwaan, G. van Amerongen, D. van Riel, T. de Jong, S. Itamura, K.H. Chan, M. Tashiro, A.D.M.E. Osterhaus, Pegylated interferon-alpha protects type 1 pneumocytes against SARS coronavirus infection in macaques. Nat. Med. 10, 290–293 (2004)

    Article  Google Scholar 

  13. M. Kielian, Enhancing host cell infection by SARS-CoV-2. Science 370, 765–766 (2020)

    Article  ADS  Google Scholar 

  14. F.N. Novikov, V.S. Stroylov, I.V. Svitanko, V.E. Nebolsin, Molecular basis of COVID-19 pathogenesis. Russ. Chem. Rev. 89, 858–878 (2020)

    Google Scholar 

  15. A. Saha, B. Saha, Novel coronavirus SARS-CoV-2 (Covid-19) dynamics inside the human body. Rev. Med. Virol. 30:article e2140 (2020)

    Google Scholar 

  16. M. Scudellari, How the coronavirus infects our cells. Nature 595, 640–644 (2021)

    Article  ADS  Google Scholar 

  17. J. Shang, Y. Wan, C. Luo, G. Ye, Q. Geng, A. Auerbach, F. Li, Cell entry mechanisms of SARS-CoV-2. Proc. Natl. Acad. Sci. USA 117, 11727–11734 (2020)

    Article  Google Scholar 

  18. H. Zhang, J.M. Penninger, Y. Li, N. Zhong, A.S. Slutsky, Angiotensin-converting enzyme 2 (ACE2) as a SARS-CoV-2 receptor: molecular mechanisms and potential therapheutic target. Intensive Care Med. 46, 586–590 (2020)

    Article  Google Scholar 

  19. X. Zou, K. Chen, J. Zou, J. Han, J. Hao, Z. Han, Single cell RNA-seq data analysis on the receptor ACE2 expression reveals the potential risk of different human organs vulnerable to 2019-nCoV infection. Front. Med. 14, 185–192 (2020)

    Article  Google Scholar 

  20. L. Mao, H. Jin, M. Wang, Y. Hu, S. Chen, Q. He, J. Chang, C. Hong, Y. Zhou, D. Wang, X. Miao, Y. Li, Neurologic manifestations of hospitalized patients with coronavirus disease 2019 in Wuhan, China. JAMA Neurol. 77, 683–690 (2020)

    Article  Google Scholar 

  21. R.B. Martines, J.M. Ritter, E. Matkovic, J. Gary, B.C. Bollweg, H. Bullock, C.S. Goldsmith et al., Pathology and pathogenesis of SARS-CoV-2 associated with fatal coronavirus disease, United States. Emerg. Infect. Dis. 26, 2005–2015 (2020)

    Article  Google Scholar 

  22. Z. Xu, L. Shi, Y. Wang, J. Zhang, L. Huang, C. Zhang et al., Pathological findings of COVID-19 associated with acute respiratory distress syndrome. The Lancet Respiratory Med. 8, 420–422 (2020)

    Google Scholar 

  23. Mason. Pathogenesis of COVID-19 from a cell biology perspective. Eur. Respir. J. 55:article 2000607 (2020)

    Google Scholar 

  24. Mason. Thoughts on the alveolar phase of COVID-19. Am. J. Physiol. Lung Cell Mol. Physiol. 319, L115–L120 (2020)

    Google Scholar 

  25. E. Mochan, T.J. Sego, L. Gaona, E. Rial, G.B. Ermentrout, Compartmental model suggests importance of innate immune response to COVID-19 infection in rhesus macaques. Bull. Math. Biol. 83, 79 (2021)

    Google Scholar 

  26. J.M. Sallenave, L. Guillot, Innate immune signaling and preteolytic pathways in the resolution or exacerbation of SARS-CoV-2 in COVID-19: key therapeutic targets? Front. Immunol. 11:article 1229 (2020)

    Google Scholar 

  27. F. Zahedipour, S.A. Hosseini, T. Sathyapalan, M. Majeed, T. Jamialahmadi, K. Al-Rasadi, M. Banach, A. Sahebkar, Potential effects of curcumin in the treatment of COVID-19 infection. Phytother. Res. 34, 2911–2920 (2020)

    Article  Google Scholar 

  28. L. Zhou, Z. Niu, X. Jiang, Z. Zhang, Y. Zheng et al., SARS-CoV-2 Tarets by the pscRNA profiling of ACE2, TMPRSS2 and furin proteases. iScience 23:article 101744 (2020)

    Google Scholar 

  29. O.Y. Cheung, P. Graziano, M.W. Smith, Acute lung injury, in Practical Pulmonary Pathology: A Diagnostic Approach. ed. by K.O. Leslie, M.R. Wick (Elsevier, New York, 2018), pp. 125-146.e3

    Chapter  Google Scholar 

  30. T. Chua, S. Lukassen, S. Trum, B.P. Hennig, D. Wnedisch, F. Pott, O. Debnath, L. Thuermann, F. Kurth, M.T. Voelker et al., COVID-19 severity correlates with airway epithelium-immune cell interactions identified by single-cell analysis. Nat. Biotechnol. 38, 970–979 (2020)

    Article  Google Scholar 

  31. M.A. Stafford, L. Corey, Y. Cao, E.S. Daar, D.D. Ho, A.S. Perelson, Modeling plasma virus concentration during HIV primary infection. J. Theor. Biol. 203, 285–301 (2000)

    Article  ADS  Google Scholar 

  32. P. Baccam, C. Beauchemin, C.A. Macken, F.G. Hayden, A.S. Perelson, Kinetics of influenza A virus infection in humans. J. Virol. 80, 7590–7599 (2006)

    Article  Google Scholar 

  33. C. Hadjichrysanthou, E. Cauet, E. Lawrence, C. Vegvari, F. de Wolf, R.M. Anderson, Understanding the within-host dynamics of influenza a virus: from theory to clinical implications. J. R. Soc. Interface 13:article 20160289 (2016)

    Google Scholar 

  34. S. Bonhoeffer, R.M. May, G.M. Shaw, M.A. Nowak, Virus dynamics and drug therapy. Proc. Natl. Acad. Sci. USA 94, 6971–6976 (1997)

    Article  ADS  Google Scholar 

  35. A.S. Perelson, R. Ke, Mechanistic modeling of SARS-CoV-2 and other infectious diseases and the effect of therapeutics. Clin. Pharmacol. Therapeutics 109, 829–840 (2021)

    Article  Google Scholar 

  36. C. Zitzmann, L. Kaderali, Mathematical analysis of viral replication dynamics and antiviral treatment strategy: from basic models to age-based multi-scale modeling. Front. Microbiol. 9:article 01546 (2018)

    Google Scholar 

  37. M.A. Nowak, R.M. May, Viral Dynamics: Mathematical Principles of Immunology and Virology (Oxford University Press, New York, 2000)

    MATH  Google Scholar 

  38. A. Boianelli, V.K. Nguyen, T. Ebensen, K. Schulze, E. Wilk, N. Sharma, S. Stegemann-Koniszewski, D. Bruder, F.R. Toapanta, C.A. Guzman, M. Meyer-Hermann, E.A. Hernandez-Vargas, Modeling influenza virus infection: a roadmap for influenza research. Viruses 7, 5274–5304 (2015)

    Article  Google Scholar 

  39. H. Ikeda, R.J. de Boer, K. Sato, S. Morita, N. Misawa, Y. Koyanagi, K. Aihara, S. Iwami. Improving the estimation of the death rate of infected cells from time course data during acute phase of virus infections: application to acute HIV-1 infection in a humanized mouse model. Theor. Biol. Med. Model. 11:article 22 (2014)

    Google Scholar 

  40. R. Sender et al., Proc. Natl. Acad. Sci. USA 118:article 2024815118 (2021)

    Google Scholar 

  41. T.D. Frank, SARS-Coronavirus-2 nonlinear dynamics in patients: three-dimensional state and amplitude state description. J. Phys. Soc. Jpn. 90:article 073802 (2021)

    Google Scholar 

  42. M.A. Nowak, A.L. Lloyd, G.M. Vasquez, T.A. Wiltrout, L.M. Wahl, N. Bischofberger, J. Williams, A. Kinter, A.S. Fauci, V.M. Hirsch, J.D. Lifson, Viral dynamics of primary viremia and antiretrovial therapy in Simian immunodeficiency virus infection. J. Virol. 71, 7518–7525 (1997)

    Google Scholar 

  43. A.M. Smith, F.R. Adler, A.S. Perelson, An accurate two-phase approximative solution to acute viral infection model. J. Math. Biol. 60, 711–726 (2010)

    Article  MathSciNet  Google Scholar 

  44. B.P. Holder, P. Simon, L.E. Liao, Y. Abed, X. Bouhy, C.A.A. Beauchemin, G. Boivin, Assessing the in vitro fitness of an oseltamivir-resistant seasonal a/h1n1 influenza train using a mathematical model. PLoS One 6:article e14767 (2011)

    Google Scholar 

  45. K. Best, J. Guedj, V. Madelain, X. de Lamballerie, S.Y. Lim, C.E. Osuna, J.B. Whitney, A.S. Perelson, Zika plasma viral dynamics in nonhuman primates provides insights into earlz infection and antiviral strategies. PNAS 114, 8847–8852 (2017)

    Article  Google Scholar 

  46. C.A.A. Beauchemin, J.J. McSharry, G.L. Drusano, J.T. Nguyen, G.T. Went, R.M. Ribeiro, A.S. Perelson, Modeling amantadine treatment of influenza A virus in vitro. J. Theor. Biol. 254, 439–451 (2008)

    Article  ADS  Google Scholar 

  47. A.S. Perelson, D.E. Kirschner, R. De Boer, Dynamics of HIV infection of CD4+ T cells. Math. Biosci. 114, 81–125 (2013)

    Article  Google Scholar 

  48. J.J. Sedmak, S.E. Grossberg, Interferon bioassay: reduction in yield of myxovirus neuroaminidases. J. Gen. Virol. 21, 1–7 (1973)

    Article  Google Scholar 

  49. E. Möhler, D. Flockerzi, H. Sann, U. Reichl, Mathematical model of influenza A virus production in large-scale microcarrier culture. Biotechnol. Bioeng. 90, 48–58 (2005)

    Article  Google Scholar 

  50. L. Canini, F. Carrat, Population modeling of influenza a/h1n1 virus kinetics and symptom dynamics. J. Virol. 85, 2764–2770 (2011)

    Article  Google Scholar 

  51. K. Patel et al., Respiratory syncytial virus a dynamics and the effect of lumicitabine, a nucleoside viral replication inhibitor, in experimentally infect.ed humans. J. Antimicrob Chemother. 74, 442–452 (2019)

    Article  Google Scholar 

  52. E.N. Hernandez-Vargas, J.X. Velasco-Hernandez, In-host mathematical modelling of COVID-19 in humans. Ann. Rev. Control 50, 448–456 (2020)

    Article  MathSciNet  Google Scholar 

  53. S. Wang, Y. Pan, Q. Wang, H. Miao, A.N. Brown, L. Rong, Modeling the viral dynamics of SARS-CoV-2 infection. Math. Biosci. 328:article 108438 (2020)

    Google Scholar 

  54. M.M. Böhmer, U. Buchholz, V.M. Corman, M. Hoch, K. Katz et al., Investigation of a COVID-19 outbreak in Germany resulting from a single travel-associated primary case: a case series. The Lancet Infecti. Dis. 20, 920–928 (2020)

    Google Scholar 

  55. T.D. Frank, SARS-coronavirus-2 infections: biological instabilities characterized by order parameters, Phys. Biol. 19:article 036001 (2022)

    Google Scholar 

  56. A. Goncalves, Y. Bertrand, R. Ke, E. Comets, X. de Lamballerie, D. Malvy, Pizzorno, O. Terrier, M.R. Calatrava, F. Mentre, P. Smith, A.S. Perelson, J. Guedj, Timing of antiviral treatment initiation is critical to reduce SARS-CoV-2 viral load. CPT: Pharmacometrics Syst. Pharmacol. 9, 509–514 (2020)

    Google Scholar 

  57. T.D. Frank, Unifying mass-action kinetics and Newtonian mechanics by means of Nambu brackts. J. Biol. Phys. 37, 375–385 (2011)

    Article  Google Scholar 

  58. N. Neant et al., Modeling SARS-CoV-2 viral kinetics and association with mortality in hospitalized patients from the French COVID cohort. PNAS 118, e2017962118 (2021)

    Google Scholar 

  59. P. Czuppon, F. Debarre, A. Goncalves, O. Tenaillon, A.S. Perelson, J. Guedj, F. Blanquart, Success of prophylactic antiviral therapy for SARS-CoV-2: predicted critical efficiacies and impact of different drug-specific mechanisms of action. PLoS Comput. Biol. 17, e1008752 (2021)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Till D. Frank .

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Frank, T.D. (2022). Models of Virus Dynamics. In: COVID-19 Epidemiology and Virus Dynamics. Understanding Complex Systems. Springer, Cham. https://doi.org/10.1007/978-3-030-97178-6_9

Download citation

Publish with us

Policies and ethics