Skip to main content

On Pairing-Free Blind Signature Schemes in the Algebraic Group Model

  • Conference paper
  • First Online:
Public-Key Cryptography – PKC 2022 (PKC 2022)

Abstract

Studying the security and efficiency of blind signatures is an important goal for privacy sensitive applications. In particular, for large-scale settings (e.g., cryptocurrency tumblers), it is important for schemes to scale well with the number of users in the system. Unfortunately, all practical schemes either 1) rely on (very strong) number theoretic hardness assumptions and/or computationally expensive pairing operations over bilinear groups, or 2) support only a polylogarithmic number of concurrent (i.e., arbitrarily interleaved) signing sessions per public key. In this work, we revisit the security of two pairing-free blind signature schemes in the Algebraic Group Model (AGM) + Random Oracle Model (ROM). Concretely,

  1. 1.

    We consider the security of Abe’s scheme (EUROCRYPT ‘01), which is known to have a flawed proof in the plain ROM. We adapt the scheme to allow a partially blind variant and give a proof of the new scheme under the discrete logarithm assumption in the AGM+ROM, even for (polynomially many) concurrent signing sessions.

  2. 2.

    We then prove that the popular blind Schnorr scheme is secure under the one-more discrete logarithm assumption if the signatures are issued sequentially. While the work of Fuchsbauer et al. (EUROCRYPT ‘20) proves the security of the blind Schnorr scheme for concurrent signing sessions in the AGM+ROM, its underlying assumption, ROS, is proven false by Benhamouda et al. (EUROCRYPT ‘21) when more than polylogarithmically many signatures are issued. Given the recent progress, we present the first security analysis of the blind Schnorr scheme in the slightly weaker sequential setting. We also show that our security proof reduces from the weakest possible assumption, with respect to known reduction techniques.

J. Kastner—Supported by ERC Project PREP-CRYPTO 724307.

J. Loss—Work done while at University of Maryland.

J. Xu—Work done while at George Mason University.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Although the attack can be formulated for all the aforementioned blind signature schemes, the algebraic structure in the latter two schemes gives rise to an efficient attack.

  2. 2.

    We include this in case the scheme permits such a check - for example, one can think of schemes where the public key consists of group elements, in which case a user may be able to check that the public key consists of valid encodings of group elements. Another example of such a check is in the original version of Abe’s scheme [1] where \(\mathbf {z}= H_1(\mathbf {g},\mathbf {h},\mathbf {y})\) which a user may check.

  3. 3.

    We note that the check for \(\varepsilon = \omega + \delta \) implicitly checks that \(c + d = e\) as well as \(\mathbf {a} = \mathbf {y}^{c}\mathbf {g}^{r}, \mathbf {b}_{1} = \mathbf {z}_{1}^{d}\mathbf {g}^{s_1}, \mathbf {b}_{2} = \mathbf {z}_{2}^{d}\mathbf {h}^{s_2}\), i.e. it checks that the output of \(\mathsf {Sign}-2\) was valid.

  4. 4.

    We note that these checks need to be done explicitly here, as they are no longer implicitly performed through checking that \(\varepsilon = \omega + \delta \).

  5. 5.

    We use different letters to denote the variables in the scheme than what we used in the previous section. Our choices are in line with the standard notation for this scheme.

  6. 6.

    Since the security game is sequential OMUF, and \(\mathsf {M}\) can make at most \(\ell \) many \(\mathbf {Sign}_2\) queries, this implies that \(\mathsf {M}\) can make at most \(\ell +1\) many \(\mathbf {Sign}_1\) queries. Obviously, any adversary who makes less than \(\ell +1\) many \(\mathbf {Sign}_1\) queries, or less than \(\ell \) many \(\mathbf {Sign}_2\) queries, or returns more than \(\ell +1\) valid signatures, can be turned into an adversary who makes exactly \(\ell +1\) many \(\mathbf {Sign}_1\) and exactly \(\ell \) many \(\mathbf {Sign}_2\) queries, and returns exactly \(\ell +1\) valid signatures, with the same advantage and roughly the same running time.

  7. 7.

    This theorem even holds for a weaker version of \(\ell \)-\(\mathbf {SEQ\text {-}OMUF}_{\mathsf {BSS}}\) where the adversary \(\mathsf {A}\) is required to output signatures for \(\ell +1\) distinct messages.

References

  1. Abe, M.: A secure three-move blind signature scheme for polynomially many signatures. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 136–151. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44987-6_9

    Chapter  Google Scholar 

  2. Abe, M., Fujisaki, E.: How to date blind signatures. In: Kim, K., Matsumoto, T. (eds.) ASIACRYPT 1996. LNCS, vol. 1163, pp. 244–251. Springer, Heidelberg (1996). https://doi.org/10.1007/BFb0034851

    Chapter  Google Scholar 

  3. Abe, M., Okamoto, T.: Provably secure partially blind signatures. In: Bellare, M. (ed.) CRYPTO 2000. LNCS, vol. 1880, pp. 271–286. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-44598-6_17

    Chapter  Google Scholar 

  4. Agrikola, T., Hofheinz, D., Kastner, J.: On instantiating the algebraic group model from falsifiable assumptions. In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020. LNCS, vol. 12106, pp. 96–126. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45724-2_4

    Chapter  Google Scholar 

  5. Kılınç Alper, H., Burdges, J.: Two-round trip Schnorr multi-signatures via delinearized witnesses. In: Malkin, T., Peikert, C. (eds.) CRYPTO 2021. LNCS, vol. 12825, pp. 157–188. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-84242-0_7

    Chapter  Google Scholar 

  6. Baldimtsi, F., Lysyanskaya, A.: Anonymous credentials light. In: Sadeghi, A.R., Gligor, V.D., Yung, M. (eds.) ACM CCS 2013, pp. 1087–1098. ACM Press (November 2013)

    Google Scholar 

  7. Baldimtsi, F., Lysyanskaya, A.: On the security of one-witness blind signature schemes. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013. LNCS, vol. 8270, pp. 82–99. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-42045-0_5

    Chapter  Google Scholar 

  8. Bauer, B., Fuchsbauer, G., Loss, J.: A classification of computational assumptions in the algebraic group model. In: Micciancio, D., Ristenpart, T. (eds.) CRYPTO 2020. LNCS, vol. 12171, pp. 121–151. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-56880-1_5

    Chapter  Google Scholar 

  9. Bellare, M., Namprempre, C., Pointcheval, D., Semanko, M.: The one-more-RSA-inversion problems and the security of Chaum’s blind signature scheme. J. Cryptol. 16(3), 185–215 (2003)

    Article  MathSciNet  Google Scholar 

  10. Bellare, M., Rogaway, P.: Random oracles are practical: a paradigm for designing efficient protocols. In: Denning, D.E., Pyle, R., Ganesan, R., Sandhu, R.S., Ashby, V. (eds.) ACM CCS 93, pp. 62–73. ACM Press (November 1993)

    Google Scholar 

  11. Bellare, M., Rogaway, P.: Code-based game-playing proofs and the security of triple encryption. Cryptology ePrint Archive, Report 2004/331 (2004). https://eprint.iacr.org/2004/331

  12. Benhamouda, F., Lepoint, T., Loss, J., Orrù, M., Raykova, M.: On the (in)security of ROS. In: Canteaut, A., Standaert, F.-X. (eds.) EUROCRYPT 2021. LNCS, vol. 12696, pp. 33–53. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-77870-5_2

    Chapter  MATH  Google Scholar 

  13. Boldyreva, A.: Threshold signatures, multisignatures and blind signatures based on the Gap-Diffie-Hellman-Group signature scheme. In: Desmedt, Y.G. (ed.) PKC 2003. LNCS, vol. 2567, pp. 31–46. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-36288-6_3

    Chapter  Google Scholar 

  14. Boneh, D., Venkatesan, R.: Breaking RSA may not be equivalent to factoring. In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 59–71. Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0054117

    Chapter  Google Scholar 

  15. Bouaziz-Ermann, S., Canard, S., Eberhart, G., Kaim, G., Roux-Langlois, A., Traoré, J.: Lattice-based (partially) blind signature without restart. Cryptology ePrint Archive, Report 2020/260 (2020). https://eprint.iacr.org/2020/260

  16. Brands, S.: Untraceable off-line cash in wallet with observers. In: Stinson, D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 302–318. Springer, Heidelberg (1994). https://doi.org/10.1007/3-540-48329-2_26

    Chapter  MATH  Google Scholar 

  17. Chaum, D.: Blind signatures for untraceable payments. In: Chaum, D., Rivest, R.L., Sherman, A.T. (eds.) Advances in Cryptology, pp. 199–203. Springer, Boston, MA (1983). https://doi.org/10.1007/978-1-4757-0602-4_18

    Chapter  Google Scholar 

  18. Coron, J.-S.: Optimal security proofs for PSS and other signature schemes. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 272–287. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-46035-7_18

    Chapter  Google Scholar 

  19. Drijvers, M., et al.: On the security of two-round multi-signatures. In: 2019 IEEE Symposium on Security and Privacy, pp. 1084–1101. IEEE Computer Society Press (May 2019)

    Google Scholar 

  20. Fischlin, M.: Round-optimal composable blind signatures in the common reference string model. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 60–77. Springer, Heidelberg (2006). https://doi.org/10.1007/11818175_4

    Chapter  Google Scholar 

  21. Fuchsbauer, G., Hanser, C., Slamanig, D.: Practical round-optimal blind signatures in the standard model. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9216, pp. 233–253. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48000-7_12

    Chapter  MATH  Google Scholar 

  22. Fuchsbauer, G., Kiltz, E., Loss, J.: The algebraic group model and its applications. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol. 10992, pp. 33–62. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96881-0_2

    Chapter  Google Scholar 

  23. Fuchsbauer, G., Plouviez, A., Seurin, Y.: Blind Schnorr signatures and signed ElGamal encryption in the algebraic group model. In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020. LNCS, vol. 12106, pp. 63–95. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45724-2_3

    Chapter  Google Scholar 

  24. Garg, S., Gupta, D.: Efficient round optimal blind signatures. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 477–495. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-55220-5_27

    Chapter  Google Scholar 

  25. Garg, S., Rao, V., Sahai, A., Schröder, D., Unruh, D.: Round optimal blind signatures. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 630–648. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22792-9_36

    Chapter  Google Scholar 

  26. Ghoshal, A., Tessaro, S.: Tight state-restoration soundness in the algebraic group model. In: Malkin, T., Peikert, C. (eds.) CRYPTO 2021. LNCS, vol. 12827, pp. 64–93. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-84252-9_3

    Chapter  Google Scholar 

  27. Hauck, E., Kiltz, E., Loss, J.: A modular treatment of blind signatures from identification schemes. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019. LNCS, vol. 11478, pp. 345–375. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17659-4_12

    Chapter  Google Scholar 

  28. Hauck, E., Kiltz, E., Loss, J., Nguyen, N.K.: Lattice-based blind signatures, revisited. In: Micciancio, D., Ristenpart, T. (eds.) CRYPTO 2020. LNCS, vol. 12171, pp. 500–529. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-56880-1_18

    Chapter  Google Scholar 

  29. Juels, A., Luby, M., Ostrovsky, R.: Security of blind digital signatures. In: Kaliski, B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 150–164. Springer, Heidelberg (1997). https://doi.org/10.1007/BFb0052233

    Chapter  Google Scholar 

  30. Kastner, J., Loss, J., Xu, J.: On pairing-free blind signature schemes in the algebraic group model. Cryptology ePrint Archive, Report 2020/1071 (2020). https://eprint.iacr.org/2020/1071

  31. Katz, J., Loss, J., Rosenberg, M.: Boosting the security of blind signature schemes. In: Tibouchi, M., Wang, H. (eds.) Advances in Cryptology, ASIACRYPT 2021. LNCS, vol. 13093. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-92068-5_16

  32. Nick, J., Ruffing, T., Seurin, Y.: MuSig2: simple two-round Schnorr multi-signatures. In: Malkin, T., Peikert, C. (eds.) CRYPTO 2021. LNCS, vol. 12825, pp. 189–221. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-84242-0_8

    Chapter  Google Scholar 

  33. Nicolosi, A., Krohn, M.N., Dodis, Y., Mazières, D.: Proactive two-party signatures for user authentication. In: NDSS 2003. The Internet Society (February 2003)

    Google Scholar 

  34. Ohkubo, M., Abe, M.: Security of some three-move blind signature schemes reconsidered. In: The 2003 Symposium on Cryptography and Information Security (2003)

    Google Scholar 

  35. Okamoto, T.: Provably secure and practical identification schemes and corresponding signature schemes. In: Brickell, E.F. (ed.) CRYPTO 1992. LNCS, vol. 740, pp. 31–53. Springer, Heidelberg (1993). https://doi.org/10.1007/3-540-48071-4_3

    Chapter  Google Scholar 

  36. Okamoto, T.: Efficient blind and partially blind signatures without random oracles. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 80–99. Springer, Heidelberg (2006). https://doi.org/10.1007/11681878_5

    Chapter  Google Scholar 

  37. Paillier, P., Vergnaud, D.: Discrete-log-based signatures may not be equivalent to discrete log. In: Roy, B. (ed.) ASIACRYPT 2005. LNCS, vol. 3788, pp. 1–20. Springer, Heidelberg (2005). https://doi.org/10.1007/11593447_1

    Chapter  Google Scholar 

  38. Papachristoudis, D., Hristu-Varsakelis, D., Baldimtsi, F., Stephanides, G.: Leakage-resilient lattice-based partially blind signatures. IET Inf. Secur. 13(6), 670–684 (2019)

    Article  Google Scholar 

  39. Pointcheval, D.: Strengthened security for blind signatures. In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 391–405. Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0054141

    Chapter  Google Scholar 

  40. Pointcheval, D., Stern, J.: Provably secure blind signature schemes. In: Kim, K., Matsumoto, T. (eds.) ASIACRYPT 1996. LNCS, vol. 1163, pp. 252–265. Springer, Heidelberg (1996). https://doi.org/10.1007/BFb0034852

    Chapter  Google Scholar 

  41. Pointcheval, D., Stern, J.: New blind signatures equivalent to factorization (extended abstract). In: Graveman, R., Janson, P.A., Neuman, C., Gong, L. (eds.) ACM CCS 1997, pp. 92–99. ACM Press (April 1997)

    Google Scholar 

  42. Pointcheval, D., Stern, J.: Security arguments for digital signatures and blind signatures. J. Cryptol. 13(3), 361–396 (2000)

    Article  Google Scholar 

  43. Rotem, L., Segev, G.: Algebraic distinguishers: from discrete logarithms to decisional Uber assumptions. In: Pass, R., Pietrzak, K. (eds.) TCC 2020. LNCS, vol. 12552, pp. 366–389. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-64381-2_13

    Chapter  Google Scholar 

  44. Schnorr, C.P.: Efficient identification and signatures for smart cards. In: Brassard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 239–252. Springer, New York (1990). https://doi.org/10.1007/0-387-34805-0_22

    Chapter  Google Scholar 

  45. Schnorr, C.P.: Security of blind discrete log signatures against interactive attacks. In: Qing, S., Okamoto, T., Zhou, J. (eds.) ICICS 2001. LNCS, vol. 2229, pp. 1–12. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45600-7_1

    Chapter  Google Scholar 

  46. Shoup, V.: Sequences of games: a tool for taming complexity in security proofs. Cryptology ePrint Archive, Report 2004/332 (2004). https://eprint.iacr.org/2004/332

  47. Wagner, D.: A generalized birthday problem. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 288–304. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45708-9_19

    Chapter  Google Scholar 

Download references

Acknowledgements

We would like to thank Chenzhi Zhu and Stefano Tessaro for pointing out a flaw in a previous version of Claim 5. We would further like to thank the anonymous reviewers for their helpful feedback.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julia Kastner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 International Association for Cryptologic Research

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kastner, J., Loss, J., Xu, J. (2022). On Pairing-Free Blind Signature Schemes in the Algebraic Group Model. In: Hanaoka, G., Shikata, J., Watanabe, Y. (eds) Public-Key Cryptography – PKC 2022. PKC 2022. Lecture Notes in Computer Science(), vol 13178. Springer, Cham. https://doi.org/10.1007/978-3-030-97131-1_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-97131-1_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-97130-4

  • Online ISBN: 978-3-030-97131-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics