Skip to main content

Landfill Leachate Treatment

  • Chapter
  • First Online:
Solid Waste Engineering and Management

Abstract

Disposal of municipal solid waste is an environmental burden worldwide, and landfilling is still the widely applied solution for the management of discarded solid waste because of its cost-effectiveness and simpler operational mechanism. Due to the complex reactions inside, landfills generate severely polluted wastewater streams recognized as leachate. Leachate is concentrated wastewater with extreme pH, chemical oxygen demand (COD), biochemical oxygen demand (BOD), organic refractory compounds, inorganic salts and toxicity. It is a typical dilemma of a landfill system and a potential threat for environmental elements, which must be treated before discharge into water bodies. Because of the variability in waste composition depending on the landfilling practice, local climatic conditions, landfill’s physicochemical conditions, bio geochemistry and landfill age, treatment of leachate becomes more critical than municipal wastewater. Numerous biological, physicochemical treatment methods are being practised worldwide for landfill leachate. This chapter aims to summarize an overview of the different innovative options applied for landfill leachate treatment and the way forward.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AF:

Anaerobic filter

AlSO4:

Aluminium sulphate

AOP:

Advanced oxidation process

AOX:

Halogenated hydrocarbon

ASBR:

Anaerobic sequencing batch reactor

ASEAN:

Association of Southeast Asian Nations

BOD:

Biochemical oxygen demand

BOD5:

5 Days biochemical oxygen demand

CaCO3:

Calcium carbonate

CaH2PO4.H2O:

Calcium hydrogen phosphate

CBOD:

Carbonaceous biochemical oxygen demand

CEC:

Cation exchange capacity

Cl-:

Chloride

C/N:

Carbon to nitrogen ratio

CO2:

Carbon dioxide

COD:

Chemical oxygen demand

COPTS:

Cross-linked oil palm trunk starch

DAF:

Dissolved air flotation

DNA:

Deoxyribonucleic acid

DO:

Dissolved oxygen

DOC:

Dissolved organic carbon

DOM:

Dissolved organic matter

EF:

Electro-flotation

FBR:

Fluidized bed reactor

FeCl3:

Ferric chloride

FeSO4:

Ferrous sulphate

GAC:

Granular activated carbon

H2:

Hydrogen

H2O:

Water

H2O2:

Hydrogen peroxide

H2SO4:

Sulphuric acid

H3PO4:

Phosphate acid

HCl:

Hydrochloric acid

HRT:

Hydraulic retention time

IAF:

Induced air flotation

JSS:

Jackfruit seed starch

LMC:

Larger molecular weight

MAP:

Magnesium ammonium phosphate

MBBR:

Moving bed biofilm reactor

MBR:

Membrane biological reactor

MF:

Microfiltration

MgCl2.6H2O:

Magnesium chloride

MgO:

Magnesium oxide

Mg (OH)2:

Magnesium hydroxide

MgSO4:

Magnesium sulphate

MOC:

Mean oxidation number of carbons

MSW:

Municipal solid waste

MW:

Molecular weight

Na2HPO4.12H2O:

Sodium hydrogen phosphate

NaCl:

Sodium chloride

NaOH:

Sodium hydroxide

NF:

Nanofiltration

NH3:

Ammonia

NH4+:

Ammonium

NH4–N:

Ammoniacal nitrogen

NH4OH:

Ammonium hydroxide

NO3-N:

Nitrite

NOM:

Natural organic matter

NSTS:

Native sago trunk starch

O3:

Ozone

OCl:

Hypochlorite ions

OH:

Hydroxide ion

OPTS:

Oil palm trunk starch

PAC:

Powdered activated carbon

PO34−-P:

Orthophosphate

PtCo:

Platinum cobalt

RBC:

Rotating biological contactor

RF:

Rice flour

RO:

Reverse osmosis

SALL:

Semi-aerobic landfill leachate

SBR:

Sequencing batch reactor

SiO2:

Silicon dioxide

S-MBR:

Activated sludge plant equipped with filtration membrane

SO42−:

Sulphate

THM:

Trihalomethanes

TiO:

Titanium oxide

TL:

Tobacco leaf

TN:

Total nitrogen

TOC:

Total organic carbon

TSS:

Total suspended solid

UASB:

Up-flow anaerobic sludge blanket

UF:

Ultrafiltration

UV:

Ultraviolet

VFA:

Volatile fatty acid

VOC:

Volatile organic carbon

VS:

Volatile solid

Δ ED:

is the variation of water content in waste

b :

is the adsorption energy

B :

is the quantity of water produced by biochemical reactions

C 0 :

is the initial concentration of adsorbate (mg/L)

C b :

is the breakthrough leachate concentration (mg/L)

C e :

is the equilibrium concentration of the remaining substrate in the water (mg/L)

C i :

is the influent leachate concentration (mg/L)

ED:

is the water content of the waste

ETR:

is the real evapo-transpiration

G :

is the water loss as vapour associated with biogas

I :

is the infiltration at the bottom of the cell

k :

is the constant

K 1 :

is the equilibrium rate constants of pseudo first order (min−1)

K 2 :

is the equilibrium rate constants of pseudo-second order (g/mg min)

𝐾 f :

is the Freundlich affinity coefficient (L/mg)

L :

is the leachate volume that can be produced

M :

is the mass of the adsorbent

M c :

is mass of adsorbent (limestone) (g)

n :

is the exponential constant, which represents the adsorption capacity

P :

is the rainfall amount of the site

Q :

is the flow rate (m3/day)

q :

is the maximum adsorption capacity (mg/gm) to complete monolayer

q e :

is the amount of the pollutant adsorbed (mg/g) at equilibrium

q t :

is the amount of the pollutant adsorbed (mg/g) at time t

R ext :

is the water quantity dripping from outside the site inward

R int :

is water dripping from the inside to the outside of the site

RM:

is the Ringgit Malaysia currency

tb :

is time to breakthrough (day)

V :

is the volume of sample (ml)

X :

is the mass of the adsorbate

(x/m)b:

is field breakthrough adsorption capacity (g/g)

References

  1. Chong, T. L., Matsufuji, Y., & Hassan, M. N. (2005). Implementation of the semi-aerobic landfill system (Fukuoka method) in developing countries: A Malaysia cost analysis. Waste Management, 25(7), 702–711.

    Article  Google Scholar 

  2. Abdel-Shafy, H. I., & Mansour, M. S. M. (2018). Solid waste issue: Sources, composition, disposal, recycling, and valorization. Egyptian Journal of Petroleum, 27(4), 1275–1290. https://doi.org/10.1016/j.ejpe.2018.07.003

    Article  Google Scholar 

  3. Saidan, M. N., Drais, A. A., & Al-Manaseer, E. (2017). Solid waste composition analysis and recycling evaluation: Zaatari Syrian Refugees Camp, Jordan. Waste Management, 61, 58–66. https://doi.org/10.1016/j.wasman.2016.12.026

    Article  CAS  Google Scholar 

  4. Torretta, V., Ferronato, N., Katsoyiannis, I. A., Tolkou, A. K., & Airoldi, M. (2017). Novel and conventional technologies for landfill leachates treatment: A review. Sustainability, 9(1), 1–39. https://doi.org/10.3390/su9010009

    Article  CAS  Google Scholar 

  5. Kumar, M. V., Srivarushan, S., & Gowthami, R. (2018). IJSRST1845167|Leachate treatment from municipal solid waste landfill by using natural coagulant of zea mays. Retrieved December 2, 2019, from www.ijsrst.com

  6. Bu, L., Wang, K., Zhao, Q. L., Wei, L. L., Zhang, J., & Yang, J. C. (2010). Characterization of dissolved organic matter during landfill leachate treatment by sequencing batch reactor, aeration corrosive cell-Fenton, and granular activated carbon in series. Journal of Hazardous Materials, 179(1–3), 1096–1105. https://doi.org/10.1016/j.jhazmat.2010.03.118

    Article  CAS  Google Scholar 

  7. Bhalla, B., Saini, M., & Jha, M. (2012). Characterization of leachate from municipal solid waste (MSW) landfilling sites of Ludhiana, India: A comparative study. International Journal of Engineering Research and Applications, 2(6), 732–745.

    Google Scholar 

  8. Kamaruddin, M. A., Yusoff, M. S., Rui, L. M., Isa, A. M., Zawawi, M. H., & Alrozi, R. (2017). An overview of municipal solid waste management and landfill leachate treatment: Malaysia and Asian perspectives. Environmental Science and Pollution Research, 24(35), 26988–27020. https://doi.org/10.1007/s11356-017-0303-9

    Article  CAS  Google Scholar 

  9. Zainal, S. F. F. S., Aziz, H. A., Mohd Omar, F., & Alazaiza, M. Y. D. (2021). Sludge performance in coagulation-flocculation treatment for suspended solids removal from landfill leachate using Tin (IV) chloride and Jatropha curcas. International Journal of Environmental Analytical Chemistry, 2021, 1931161. https://doi.org/10.1080/03067319.2021.1931161

    Article  CAS  Google Scholar 

  10. Hamid, M. A. A., Aziz, H. A., Yusoff, M. S., & Rezan, S. A. (2021). A continuous clinoptilolite augmented SBR-electrocoagulation process to remove concentrated ammonia and colour in landfill leachate. Environmental Technology and Innovation, 23, 101575. https://doi.org/10.1016/j.eti.2021.101575

    Article  CAS  Google Scholar 

  11. Aziz, H. A., Othman, M., & Abu Amr, S. S. (2013). The performance of Electro-Fenton oxidation in the removal of coliform bacteria from landfill leachate. Waste Management, 33, 396–400.

    Article  CAS  Google Scholar 

  12. Aziz, H. A., Mohd Zahari, M. S., Adlan, M. N., & Hung, Y. T. (2012). Physicochemical treatment processes of landfill leachate. In Handbook of environment and waste management: Air and water pollution control (pp. 819–888). World Scientific. https://doi.org/10.1142/9789814327701_0019

    Chapter  Google Scholar 

  13. Hamid, M. A. B. A.. (2021). Zeolite augmented electrocoagulation process for removing ammonia and colour in saline landfill leachate. PhD thesis. Aschool of Civil Engineering, Universiti Sains Malaysia.

    Google Scholar 

  14. Zainal, S. F. F. B. S.. (2021). Jatropha curcas as flocculant agent in highly coloured stabilised landfill leachate treatment. PhD thesis. Aschool of Civil Engineering, Universiti Sains Malaysia.

    Google Scholar 

  15. EQA. (2014). Environmental quality act 1974 (Act 127), regulations, rules & orders. Department of Environment (DOE), Ministry of Science, Technology and Innovation (MOSTI).

    Google Scholar 

  16. Vahabian, M., Hassanzadeh, Y., & Marofi, S. (2019). Assessment of landfill leachate in semi-arid climate and its impact on the groundwater quality case study: Hamedan, Iran. Environmental Monitoring and Assessment, 191(2), 7215. https://doi.org/10.1007/s10661-019-7215-8

    Article  CAS  Google Scholar 

  17. Frikha, Y., Fellner, J., & Zairi, M. (2017). Leachate generation from landfill in a semi-arid climate: A qualitative and quantitative study from Sousse, Tunisia. Waste Management & Research, 35(9), 940–948. https://doi.org/10.1177/0734242X17715102

    Article  CAS  Google Scholar 

  18. Vaccari, M., Tudor, T., & Vinti, G. (2019). Characteristics of leachate from landfills and dumpsites in Asia, Africa and Latin America: An overview. Waste Management, 95, 416–431. https://doi.org/10.1016/j.wasman.2019.06.032

    Article  CAS  Google Scholar 

  19. Adeolu, A. O., Ada, O. V., Gbenga, A. A., & Adebayo, O. A. (2011). Assessment of groundwater contamination by leachate near a municipal solid waste landfill. African Journal of Environmental Science and Technology, 5(11), 933–940. https://doi.org/10.5897/AJEST11.272

    Article  CAS  Google Scholar 

  20. Zhang, X., Jiang, C., Shan, Y., Zhang, X., & Zhao, Y. (2019). Influence of the void fraction and vertical gas vents on the waste decomposition in semi-aerobic landfill: Lab-scale tests. Waste Management, 100, 28–35. https://doi.org/10.1016/j.wasman.2019.08.039

    Article  CAS  Google Scholar 

  21. Aziz, H. A., Adlan, M. N., Amilin, K., Yusoff, M. S., & Ramly, N. H. (2002). Quantification of generation rate of leachate from semi-aerobic landfill: Field data. In: The 5th Asian symposium on academic activities for waste management (AAAWM), Kuala Lumpur, 9–12 September.

    Google Scholar 

  22. Wiszniowski, J., Robert, D., Surmacz-Gorska, J., Miksch, K., & Weber, J. V. (2006). Landfill leachate treatment methods: A review. Environmental Chemistry Letters, 4(1), 51–61. https://doi.org/10.1007/s10311-005-0016-z

    Article  CAS  Google Scholar 

  23. Renou, S., Givaudan, J. G., Poulain, S., Dirassouyan, F., & Moulin, P. (2008). Landfill leachate treatment: Review and opportunity. Journal of Hazardous Materials, 150(3), 468–493. https://doi.org/10.1016/j.jhazmat.2007.09.077

    Article  CAS  Google Scholar 

  24. Kamaruddin, M., Yusoff, M., Aziz, H., & Hung, Y.-T. (2016). Sustainable treatment of landfill leachate. Landfill Leachate, 2016, 3–30. https://doi.org/10.1201/b20005-3

    Article  Google Scholar 

  25. Abbas, A. A., Jingsong, G., Ping, L. Z., Ya, P. Y., & Al-Rekabi, W. S. (2009). Review on landfill leachate treatments. American Journal of Applied Sciences, 6(4), 672–684. https://doi.org/10.3844/ajas.2009.672.684

    Article  CAS  Google Scholar 

  26. Peters, T. A. (1998). Purification of landfill leachate with membrane filtration. Filtration & Separation, 1998, 33–36.

    Article  Google Scholar 

  27. Li, X. Z., Zhao, Q. L., & Hao, X. D. (1999). Ammonium removal from landfill leachate by chemical precipitation. Waste Management, 19, 409–415.

    Article  CAS  Google Scholar 

  28. Amokrane, A., Comel, C., & Veron, J. (1997). Landfill leachates pretreatment by coagulation-flocculation. Water Research, 31(11), 2775–2782.

    Article  CAS  Google Scholar 

  29. Madu, J. I. (2008). New leachate treatment methods. Lund University.

    Google Scholar 

  30. Matsufuji, J. (1990). Technical guideline on sanitary landfill. Japan International Cooperation Agency.

    Google Scholar 

  31. Zamri, M. F. M. A., Kamaruddin, M. A., Yusoff, M. S., Aziz, H. A., & Foo, K. Y. (2017). Semi-aerobic stabilized landfill leachate treatment by ion exchange resin: Isotherm and kinetic study. Applied Water Science, 7(2), 581–590. https://doi.org/10.1007/s13201-015-0266-2

    Article  CAS  Google Scholar 

  32. Peng, Y. (2017). Perspectives on technology for landfill leachate treatment. Arabian Journal of Chemistry, 10, 2567–2574. https://doi.org/10.1016/j.arabjc.2013.09.031

    Article  CAS  Google Scholar 

  33. Hamidi, A. A., & Abu Amr, S. (2016). Control and treatment of landfill leachate for sanitary waste disposal. IGI Global.

    Google Scholar 

  34. Yuan, C., et al. (2017). Multistage biological contact oxidation for landfill leachate treatment: Optimization and bacteria community analysis. International Biodeterioration and Biodegradation, 125, 200–207. https://doi.org/10.1016/j.ibiod.2017.09.008

    Article  CAS  Google Scholar 

  35. Li, R., Zi, X., Wang, X., Zhang, X., Gao, H., & Hu, N. (2013). Marinobacter hydrocarbonoclasticus NY-4, a novel denitrifying, moderately halophilic marine bacterium. Springerplus, 2(1), 1–9. https://doi.org/10.1186/2193-1801-2-346

    Article  CAS  Google Scholar 

  36. Chen, Y., Cheng, J. J., & Creamer, K. S. (2008). Inhibition of anaerobic digestion process: A review. Bioresource Technology, 99(10), 4044–4064. https://doi.org/10.1016/j.biortech.2007.01.057

    Article  CAS  Google Scholar 

  37. Mittal, A. (2011). Fig. 1: Aerobic treatment principle. Fig. 2: Anaerobic treatment principle. Biological Wastewater Treatment, 2011, 2–9.

    Google Scholar 

  38. Malaysian Sewerage Industry Guidelines (MSIG). (2009). Volume 4 sewage treatment plants (3rd ed.). Suruhanjaya Perkhidmatan Air Negara (SPAN).

    Google Scholar 

  39. Xue, Y., Zhao, H., Ge, L., Chen, Z., Dang, Y., & Sun, D. (2015). Comparison of the performance of waste leachate treatment in submerged and recirculated membrane bioreactors. International Biodeterioration and Biodegradation, 102, 73–80. https://doi.org/10.1016/j.ibiod.2015.01.005

    Article  CAS  Google Scholar 

  40. Hashisho, J., El-Fadel, M., Al-Hindi, M., Salam, D., & Alameddine, I. (2016). Hollow fiber vs. flat sheet MBR for the treatment of high strength stabilized landfill leachate. Waste Management, 55, 249–256. https://doi.org/10.1016/j.wasman.2015.12.016

    Article  CAS  Google Scholar 

  41. Gkotsis, P. K., Batsari, E. L., Peleka, E. N., Tolkou, A. K., & Zouboulis, A. I. (2017). Fouling control in a lab-scale MBR system: Comparison of several commercially applied coagulants. Journal of Environmental Management, 203, 838–846. https://doi.org/10.1016/j.jenvman.2016.03.003

    Article  CAS  Google Scholar 

  42. Santos, A., Ma, W., & Judd, S. J. (2011). Membrane bioreactors: Two decades of research and implementation. Desalination, 273(1), 148–154. https://doi.org/10.1016/j.desal.2010.07.063

    Article  CAS  Google Scholar 

  43. Wu, B., Kitade, T., Chong, T. H., Uemura, T., & Fane, A. G. (2012). Role of initially formed cake layers on limiting membrane fouling in membrane bioreactors. Bioresource Technology, 118, 589–593. https://doi.org/10.1016/j.biortech.2012.05.016

    Article  CAS  Google Scholar 

  44. Ahmed, F. N., & Lan, C. Q. (2012). Treatment of landfill leachate using membrane bioreactors: A review. Desalination, 287, 41–54. https://doi.org/10.1016/j.desal.2011.12.012

    Article  CAS  Google Scholar 

  45. Wikipedia Contributors. (2021). Membrane bioreactor. In: Wikipedia. The free encyclopedia. Retrieved July 25, 2021.

    Google Scholar 

  46. Mehmood, M. K., Adetutu, E., Nedwell, D. B., & Ball, A. S. (2009). In situ microbial treatment of landfill leachate using aerated lagoons. Bioresource Technology, 100(10), 2741–2744. https://doi.org/10.1016/j.biortech.2008.11.031

    Article  CAS  Google Scholar 

  47. Aziz, S. Q., Aziz, H. A., Yusoff, M. S., & Bashir, M. J. K. (2011). Landfill leachate treatment using powdered activated carbon augmented sequencing batch reactor (SBR) process: Optimization by response surface methodology. Journal of Hazardous Materials, 189(1–2), 404–413. https://doi.org/10.1016/j.jhazmat.2011.02.052

    Article  CAS  Google Scholar 

  48. Wei, Y., Ji, M., Li, R., & Qin, F. (2012). Organic and nitrogen removal from landfill leachate in aerobic granular sludge sequencing batch reactors. Waste Management, 32(3), 448–455. https://doi.org/10.1016/j.wasman.2011.10.008

    Article  CAS  Google Scholar 

  49. Aluko, O. O., & Sridhar, M. K. C. (2013). Evaluation of leachate treatment by trickling filter and sequencing batch reactor processes in Ibadan, Nigeria. Waste Management & Research, 31(7), 700–705. https://doi.org/10.1177/0734242X13485867

    Article  CAS  Google Scholar 

  50. Cortez, S., Teixeira, P., Oliveira, R., & Mota, M. (2008). Rotating biological contactors: A review on main factors affecting performance. Reviews in Environmental Science and Biotechnology, 7(2), 155–172. https://doi.org/10.1007/s11157-008-9127-x

    Article  CAS  Google Scholar 

  51. Wikipedia Contributors. (2021). Rotating biological contactor. In: Wikipedia, The free encyclopedia. Retrieved July 25, 2021.

    Google Scholar 

  52. Castillo, E., Vergara, M., & Moreno, Y. (2007). Landfill leachate treatment using a rotating biological contactor and an upward-flow anaerobic sludge bed reactor. Waste Management, 27(5), 720–726. https://doi.org/10.1016/j.wasman.2006.08.003

    Article  CAS  Google Scholar 

  53. Han, Y., Ma, J., Xiao, B., Huo, X., & Guo, X. (2019). New integrated self-refluxing rotating biological contactor for rural sewage treatment. Journal of Cleaner Production, 217, 324–334. https://doi.org/10.1016/j.jclepro.2019.01.276

    Article  CAS  Google Scholar 

  54. Chen, S., Sun, D., & Chung, J. S. (2008). Simultaneous removal of COD and ammonium from landfill leachate using an anaerobic-aerobic moving-bed biofilm reactor system. Waste Management, 28(2), 339–346. https://doi.org/10.1016/j.wasman.2007.01.004

    Article  CAS  Google Scholar 

  55. Bella, G. D., & Mannina, G. (2020). Intermittent aeration in a hybrid moving bed biofilm reactor for carbon and nutrient biological removal. Watermark, 492, 1–12. https://doi.org/10.3390/w12020492

    Article  CAS  Google Scholar 

  56. Luo, H., Zeng, Y., Cheng, Y., He, D., & Pan, X. (2020). Recent advances in municipal landfill leachate: A review focusing on its characteristics, treatment, and toxicity assessment. Science of the Total Environment, 703(2019), 135468. https://doi.org/10.1016/j.scitotenv.2019.135468

    Article  CAS  Google Scholar 

  57. Thong, S. O., Suksong, W., Promnuan, K., Thipmunee, M., Mamimin, C., & Prasertsan, P. (2016). Two-stage thermophilic fermentation and mesophilic methanogenic process for biohythane production from palm oil mill effluent with methanogenic effluent recirculation for pH control. International Journal of Hydrogen Energy, 41(46), 21702–21712. https://doi.org/10.1016/j.ijhydene.2016.07.095

    Article  CAS  Google Scholar 

  58. Monlau, F., Kaparaju, P., Trably, E., Steyer, J. P., & Carrere, H. (2015). Alkaline pretreatment to enhance one-stage CH4 and two-stage H2/CH4 production from sunflower stalks: Mass, energy and economical balances. Chemical Engineering Journal, 260, 377–385. https://doi.org/10.1016/j.cej.2014.08.108

    Article  CAS  Google Scholar 

  59. Zupančič, G. D., & Jemec, A. (2010). Anaerobic digestion of tannery waste: Semi-continuous and anaerobic sequencing batch reactor processes. Bioresource Technology, 101(1), 26–33. https://doi.org/10.1016/j.biortech.2009.07.028

    Article  CAS  Google Scholar 

  60. Jiraprasertwong, A., Vichaitanapat, K., Leethochawalit, M., & Chavadej, S. (2018). Three-stage anaerobic sequencing batch reactor (ASBR) for maximum methane production: Effects of COD loading rate and reactor volumetric ratio. Energies, 11(6), 1543. https://doi.org/10.3390/en11061543

    Article  CAS  Google Scholar 

  61. Wu, J., et al. (2018). A gradual change between methanogenesis and sulfidogenesis during a long-term UASB treatment of sulfate-rich chemical wastewater. Science of the Total Environment, 636, 168–176. https://doi.org/10.1016/j.scitotenv.2018.04.172

    Article  CAS  Google Scholar 

  62. Wikipedia Contributors. (2021). Upflow anaerobic sludge blanket digestion. In: Wikipedia, the free encyclopedia.

    Google Scholar 

  63. Gao, J., et al. (2015). The present status of landfill leachate treatment and its development trend from a technological point of view. Reviews in Environmental Science and Biotechnology, 14(1), 93–122. https://doi.org/10.1007/s11157-014-9349-z

    Article  CAS  Google Scholar 

  64. Cheung, K. C., Chu, L. M., & Wong, M. H. (1997). Ammonia stripping as a pre-treatment for landfill leachate. Water, Air, and Soil Pollution, 94, 209–221.

    Article  CAS  Google Scholar 

  65. Silva, A. C., Dezotti, M., & Sant’Anna Jr, G. L. (2004). Treatment and detoxification of a sanitary landfill leachate. Chemosphere, 55, 207–214.

    Article  CAS  Google Scholar 

  66. Ozturk, I., Altinbas, M., Koyuncu, I., Arikan, O., & Gomec-Yangin, C. (2003). Advanced physico-chemical treatment experiences on young municipal landfill leachates. Waste Management, 23, 441–446.

    Article  CAS  Google Scholar 

  67. Marttinen, S. K., Kettunen, R. H., Sormunen, K. M., Soimasuo, R. M., & Rintala, J. A. (2002). Screening of physical-chemical methods for removal of organic material, nitrogen and toxicity from low strength landfill leachates. Chemosphere, 46, 851–858.

    Article  CAS  Google Scholar 

  68. Matis, K. A., & Peleka, E. N. (2010). Alternative flotation techniques for wastewater treatment: Focus on electroflotation. Separation Science and Technology, 45(16), 2465–2474. https://doi.org/10.1080/01496395.2010.508065

    Article  CAS  Google Scholar 

  69. Zhang, Q., Liu, S., Yang, C., Chen, F., & Lu, S. (2014). Bioreactor consisting of pressurized aeration and dissolved air flotation for domestic wastewater treatment. Separation and Purification Technology, 138, 186–190. https://doi.org/10.1016/j.seppur.2014.10.024

    Article  CAS  Google Scholar 

  70. Palaniandy, P., Adlan, M. N., Aziz, H. A., & Murshed, M. F. (2010). Application of dissolved air flotation (DAF) in semi-aerobic leachate treatment. Chemical Engineering Journal, 157(2-3), 316–322. https://doi.org/10.1016/j.cej.2009.11.005

    Article  CAS  Google Scholar 

  71. Zouboulis, A. I., Chai, X.-L., & Katsoyiannis, I. A. (2004). The application of bioflocculant for the removal of humic acids from stabilized landfill leachates. Journal of Environmental Management, 70, 35–41.

    Article  Google Scholar 

  72. Adlan, M. N., Palaniandy, P., & Aziz, H. A. (2011). Optimization of coagulation and dissolved air flotation (DAF) treatment of semi-aerobic landfill leachate using response surface methodology (RSM). Desalination, 277(1–3), 74–82. https://doi.org/10.1016/j.desal.2011.04.006

    Article  CAS  Google Scholar 

  73. Painmanakul, P., Sastaravet, P., Lersjintanakarn, S., & Khaodhiar, S. (2010). Effect of bubble hydrodynamic and chemical dosage on treatment of oily wastewater by induced air flotation (IAF) process. Chemical Engineering Research and Design, 88(5–6), 693–702. https://doi.org/10.1016/j.cherd.2009.10.009

    Article  CAS  Google Scholar 

  74. Colic, M., Morse, W., & Miller, J. D. (2007). The development and application of centrifugal flotation systems in wastewater treatment. Retrieved Jan. 15, 2021, from https://www.inderscienceonline.com/doi/abs/10.1504/IJEP.2007.014706

  75. Da Rosa, J. J., & Rubio, J. (2005). The FF (flocculation-flotation) process. Minerals Engineering, 18(7), 701–707. https://doi.org/10.1016/j.mineng.2004.10.010

    Article  CAS  Google Scholar 

  76. Edzwald, J. K. (2007). Developments of high rate dissolved air flotation for drinking water treatment. Journal of Water Supply: Research and Technology, 56(6–7), 399–409. https://doi.org/10.2166/aqua.2007.013

    Article  CAS  Google Scholar 

  77. Leppinen, D. M., & Dalziel, S. B. (2004). Bubble size distribution in dissolved air flotation tanks. Journal of Water Supply Research and Technology-AQUA, 53(8), 531–543. https://doi.org/10.2166/aqua.2004.0042

    Article  Google Scholar 

  78. Thommes, M., et al. (2015). Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure and Applied Chemistry, 87(9–10), 1051–1069. https://doi.org/10.1515/pac-2014-1117

    Article  CAS  Google Scholar 

  79. Worch, E. (2012). Adsorption technology in water treatment: Fundamentals, processes, and modeling. Walter de Gruyter.

    Book  Google Scholar 

  80. Sillanpää, M. (2014). Natural organic matter in water: Characterization and treatment methods. Butterworth-Heinemann.

    Google Scholar 

  81. Bekbolet, M., Lindner, M., Weichgrebe, D., & Bahnemann, D. W. (1996). Photocatalytic detoxification with the thin-film fixed bed reactor (TFFBR): Clean-up of highly polluted landfill effluents using a novel TiO2-photocatalyst. Solar Energy, 56(5), 455–469.

    Article  CAS  Google Scholar 

  82. John, G. T., Crittenden, C., Trussell, R. R., Hand, D. W., & Howe, K. J. (2012). MWH’s water treatment: Principles and design. John Wiley & Sons, Inc..

    Google Scholar 

  83. Halim, A. A., Aziz, H. A., Johari, M. A. M., & Ariffin, K. S. (2010). Comparison study of ammonia and COD adsorption on zeolite, activated carbon and composite materials in landfill leachate treatment. Desalination, 262(1–3), 31–35. https://doi.org/10.1016/j.desal.2010.05.036

    Article  CAS  Google Scholar 

  84. Subramanyam, B., & Das, A. (2014). Linearised and non-linearised isotherm models optimization analysis by error functions and statistical means. Journal of Environmental Health Science and Engineering, 12(1), 92. https://doi.org/10.1186/2052-336X-12-92

    Article  Google Scholar 

  85. Reible, D. (2017). Fundamentals of environmental engineering. CRC Press.

    Book  Google Scholar 

  86. Imai, A., Onuma, K., Inamori, Y., & Sudo, R. (1994). Biodegradation and adsorption in refractory leachate treatment by the biological activated carbon fluidized bed process. Water Research, 29(2), 687–694.

    Article  Google Scholar 

  87. Suidan, M. T., Schroeder, A. T., Nath, R., Krishnan, F. R., & Brenner, R. C. (1993). Treatment of cercla leachates by carbon-assisted anaerobic fluidized beds. Water Science and Technology, 27, 273–282.

    Article  CAS  Google Scholar 

  88. Kargi, F., & Pamukoglu, M. Y. (2003). Simultaneous adsorption and biological treatment of pre-treated landfill leachate by fed-batch operation. Process Biochemistry, 38, 1413–1420.

    Article  CAS  Google Scholar 

  89. Cecen, F., Erdincler, A., & Kilic, E. (2003). Effect of powdered activated carbon addition on sludge dewaterability and substrate removal in landfill leachate treatment. Advances in Environmental Research, 7, 707–713.

    Article  CAS  Google Scholar 

  90. Morawe, B., Ramteke, D. S., & Vogelpohl, A. (1995). Activated carbon column performance studies of biologically treated landfill leachate. Chemical Engineering and Processing, 34, 299–303.

    Article  CAS  Google Scholar 

  91. Ehrig. (1989). Physicochemical treatment. In T. H. Christensen, R. Cossu, & R. Stegmann (Eds.), Sanitary landfilling: Process, technology and environmental impact (pp. 285–297). Academic Press.

    Google Scholar 

  92. Pirbazari, M., Ravindran, V., Badriyha, B. N., & Kim, S.-H. (1996). Hybrid membrane filtration process for leachate treatment. Water Research, 30(11), 2691–2706.

    Article  CAS  Google Scholar 

  93. Aziz, H. A., Adlan, M. N., Adnan, N. H., Yusoff, M. S., & Ramly, N. H. (2002). Removal of copper, zinc, iron and manganese from semi-aerobic leachate using limestone filter: Case study at Pulau Burung Landfill site. In: The 5th Asian symposium on academic activities for waste management (AAAWM), Kuala Lumpur, 9–12 September.

    Google Scholar 

  94. Aziz, H. A., Yusoff, M. S., Adlan, M. N., Adnan, N. H., & Alias, A. (2004). Physico-chemical removal of iron from semi-aerobic landfill leachate by limestone filter. Waste Management, 24, 353–358.

    Article  CAS  Google Scholar 

  95. Heavey, M. (2003). Low-cost treatment of landfill leachate using peat. Waste Management, 23, 447–454.

    Article  CAS  Google Scholar 

  96. Aspinwall & Co. (1995). The effect of peat on the quality of leachate from Scottish landfill waste disposal sites (FR/SC 008). Foundation for Water Research.

    Google Scholar 

  97. Harmsen, J. (1983). Identification of organic compounds in leachate from a waste tip. Water Research, 17(6), 699–705.

    Article  CAS  Google Scholar 

  98. Majone, M., Papini, M. P., & Rolle, E. (1997). Influence of metal speciation in landfill leachates on kaolinite sorption. Water Research, 32(3), 882–890.

    Article  Google Scholar 

  99. Aziz, H. A., Mohd Zahari, M. S., Adlan, M. N., & Hung, Y.-T. (2012). Physicochemical treatment processes of landfill leachate. In Handbook of environment and waste management: Air and water pollution control (pp. 819–888). World Scientific Publishing. https://doi.org/10.1142/9789814327701_0019

    Chapter  Google Scholar 

  100. Hin, L. T., Aziz, H. A., Nordin Adlan, M., & Zahari, S. M. (2004). Colour removal for leachate from semi-aerobic landfill leachate using limestone and activated carbons as media. In: Proceedings, third national conference in civil engineering, Copthorne Orchid, Tanjung Bungah, 20–22 July 2004, E14.

    Google Scholar 

  101. DiPalma, L., Ferrantelli, P., Merli, C., & Petrucci, E. (2002). Treatment of industrial landfill leachate by means of evaporation and reverse osmosis. Waste Management, 22, 951–955.

    Article  CAS  Google Scholar 

  102. Alcântara, P. B., & De Castilhos, A. B. (2014). Treatment of leachates by evaporation in the semiarid region of the Brazilian northeast. The Journal of Solid Waste Technology and Management, 40(1), 44–56. https://doi.org/10.5276/JSWTM.2014.44

    Article  Google Scholar 

  103. Ranzi, B. D., Castilhos Junior, A. B., Duarte, A., & Tavares, J. (2009). Evaporation phenomenon as a sustainable solution for landfill leachate treatment. Sardinia Margherita di Pula, 5, 2014.

    Google Scholar 

  104. Ye, Z. L., Hong, Y., Pan, S., Huang, Z., Chen, S., & Wang, W. (2017). Full-scale treatment of landfill leachate by using the mechanical vapor recompression combined with coagulation pretreatment. Waste Management, 66, 88–96. https://doi.org/10.1016/j.wasman.2017.04.026

    Article  CAS  Google Scholar 

  105. Gonze, E., Commenges, N., Gonthier, Y., & Bernis, A. (2003). High frequency ultrasound as a pre- or a post-oxidation for paper mill wastewaters and landfill leachate treatment. Chemical Engineering Journal, 92, 215–225.

    Article  CAS  Google Scholar 

  106. Joshi, S. M., & Gogate, P. R. (2019). Treatment of landfill leachate using different configurations of ultrasonic reactors combined with advanced oxidation processes. Separation and Purification Technology, 211, 10–18.

    Article  CAS  Google Scholar 

  107. Bae, B.-U., Jung, E.-S., Kim, Y.-R., & Shin, H.-S. (1998). Treatment of landfill leachate using activated sludge process and electron-beam radiation. Water Research, 33(11), 2669–2673.

    Article  Google Scholar 

  108. Yamazaki, M., Sawai, T., Sawai, T., Yamazaki, K., & Kawaguchi, S. (1984). Irradiation conditions required in combined radiation-microbial process for landfill leachate. Radioisotopes, 33, 195–202.

    Article  CAS  Google Scholar 

  109. AWWA. (1996). Water treatment membrane processes. McGraw-Hill.

    Google Scholar 

  110. Casey, T. J. (1997). Unit treatment processes in water and wastewater engineering. John Wiley & Sons.

    Google Scholar 

  111. United States Environmental Protection Agency (USEPA). (2005). Membrane filtration guidance manual. USEPA.

    Google Scholar 

  112. Rautenbach, R., Vossenkaul, K., Linn, T., & Katz, T. (1996). Waste water treatment by membrane processes – New development in ultrafiltration, nanofiltration and reverse osmosis. Desalination, 108, 247–253.

    Article  Google Scholar 

  113. Bohdziewiez, J., Bodzek, M., & Gorska, J. (2001). Application of pressure-driven membrane techniques to biological treatment of landfill leachate. Process Biochemistry, 36, 641–646.

    Article  Google Scholar 

  114. Syzdek, A. C., & Ahlert, R. C. (1984). Separation of landfill leachate with polymeric ultrafiltration membranes. Journal of Hazardous Materials, 9(2), 209–220.

    Article  CAS  Google Scholar 

  115. Trebouet, D., Schlumpf, J. P., Jaouen, P., & Quemeneur, F. (2001). Stabilized landfill leachate treatment by combined physicochemical-nanofiltration processes. Water Research, 35(12), 2935–2942.

    Article  CAS  Google Scholar 

  116. Linde, K., & Jonsson, A.-S. (1995). Nanofiltration of salt solutions and landfill leachate. Desalination, 103, 223–232.

    Article  CAS  Google Scholar 

  117. Meier, J., Melin, T., & Eilers, L. H. (2002). Nanofiltration and adsorption on powdered adsorbent as process combination for the treatment of severely contaminated waste water. Desalination, 146, 361–366.

    Article  CAS  Google Scholar 

  118. Awadalla, F. T., Striez, C., & Lamb, K. (1994). Removal of ammonium and nitrate ions from mine effluents by membrane technology. Science and Technology, 29(4), 483–495.

    CAS  Google Scholar 

  119. Chianese, A., Ranauro, R., & Verdone, N. (1998). Treatment of landfill leachate by reverse osmosis. Water Research, 33(3), 647–652.

    Article  Google Scholar 

  120. Fu, F., & Wang, Q. (2011). Removal of heavy metal ions from wastewaters: A review. Journal of Environmental Management, 92(3), 407–418. https://doi.org/10.1016/j.jenvman.2010.11.011

    Article  CAS  Google Scholar 

  121. Li, X. Z., & Zhao, Q. L. (2003). Recovery of ammonium-nitrogen from landfill leachate as a multi-nutrient fertilizer. Ecological Engineering, 20, 171–181.

    Article  Google Scholar 

  122. Tatsi, A. A., Zouboulis, A. I., Matis, K. A., & Samaras, P. (2003). Coagulation-flocculation pretreatment of sanitary landfill leachates. Chemosphere, 53, 737–744.

    Article  CAS  Google Scholar 

  123. Hilles, A. H., Abu Amr, S. S., Hussein, R. A., El-Sebaie, O. D., & Arafa, A. I. (2016). Performance of combined sodium persulfate/H2O2 based advanced oxidation process in stabilized landfill leachate treatment. Journal of Environmental Management, 166, 493–498. https://doi.org/10.1016/j.jenvman.2015.10.051

    Article  CAS  Google Scholar 

  124. Rivas, F. J., Beltran, F., Gimeno, O., Acedo, B., & Carvalho, F. (2003). Stabilized leachates: Ozone-activated carbon treatment and kinetics. Water Research, 37, 4823–4834.

    Article  CAS  Google Scholar 

  125. Ince, N. H. (1998). Water Environment Resources, 70(6), 1161–1169.

    Article  CAS  Google Scholar 

  126. Baig, S., Coulomb, I., Courant, P., & Liechti, P. (1999). Treatment of landfill leachates: Lapeyhouse and Satrod case studies. Ozone Science and Engineering, 21, 1–22.

    Article  CAS  Google Scholar 

  127. Wu, J. J., Wu, C.-C., Ma, H.-W., & Chang, C.-C. (2004). Treatment of landfill leachate by ozone-based advanced oxidation processes. Chemosphere, 54, 997–1003.

    Article  CAS  Google Scholar 

  128. Aziz, S. Q., Aziz, H. A., Bashir, M. J. K., & Mojiri, A. (2015). Assessment of various tropical municipal landfill leachate characteristics and treatment opportunities. Global NEST Journal, 17(3), 439–450.

    CAS  Google Scholar 

  129. Zakaria, S. N. F., Aziz, H. A., Abu Amrr, S. S., & Hung, Y. T. (2018). Optimisation of anaerobic stabilised leachate treatment using catalytic ozonation with zirconium tetrachloride. International Journal of Environment and Waste Management, 21(2/3), 102.

    Article  CAS  Google Scholar 

  130. Zakaria, S. N. F., Aziz, H. A., & Abu Amr, S. A. (2015). Performance of ozone/ZrCl4 oxidation in stabilized landfill leachate treatment. Applied Mechanics and Materials, 802, 501–506.

    Article  Google Scholar 

  131. Abu Amr, S. S., Zakaria, S. N. F., & Aziz, H. A. (2017). Performance of combined ozone and zirconium tetrachloride in stabilized landfill leachate treatment. Journal of Material Cycles and Waste Management, 19(4), 1384–1390.

    Article  CAS  Google Scholar 

  132. Zakaria, S. N. F., & Aziz, H. A. (2017). Influence of dosage, pH and contact time in stabilized landfill leachate treatment using ozone/zirconium tetrachloride catalytic oxidation. AIP Conference Proceedings, 1892, 040030. https://doi.org/10.1063/1.5005710

    Article  CAS  Google Scholar 

  133. Zakaria, S. N. F., & Aziz, H. A. (2017). Influence of ozonation on COD in stabilized landfill leachate: Case study at Alor Pongsu landfill site. AIP Conference Proceedings, 1892, 040006. https://doi.org/10.1063/1.5005686

    Article  CAS  Google Scholar 

  134. Wang, Z.-P., Zhang, Z., Lin, Y.-J., Deng, N.-S., Tao, T., & Zhuo, K. (2002). Landfill leachate treatment by a coagulation-photooxidation process. Journal of Hazardous Materials, 95, 153–159.

    Article  CAS  Google Scholar 

  135. Zakaria, S. N. F. (2019). Treatment of stabilized anaerobic landfill leachate by ozonation process with zirconium and tin tetrachlorides. PhD thesis. School of Civil Engineering, Universiti Sains Malaysia, Pulau Pinang, Malaysia.

    Google Scholar 

  136. Weichgrebe, D. (1994). Beitrag zur chemisch-oxidativen abwasserbehandlung Dissertation (Ph.D), Cuvillier Verlag Göttingen, Germany. TU Clausthal.

    Google Scholar 

  137. Cho, S. P., Hong, S. C., & Hong, S.-i. (2004). Study of the end point of photocatalytic degradation of landfill leachate containing refractory matter. Chemical Engineering Journal, 98, 245–253.

    Article  CAS  Google Scholar 

  138. Bauer, R., Waldner, G., Fallmann, H., Hager, S., Klare, M., Krutzler, T., Malato, S., & Maletzky, P. (1999). The photo-fenton reaction and the TiO2/UV process for wastewater treatment – novel developments. Catalysis Today, 53, 131–144.

    Article  CAS  Google Scholar 

  139. Koh, I.-O., Chen-Hamacher, X., Hicke, K., & Thiemann, W. (2004). Leachate treatment by the combination of photochemical oxidation with biological process. Journal of Photochemistry and Photobiology A: Chemistry, 162, 261–271.

    Article  CAS  Google Scholar 

  140. Wenzel, A., Gahr, A., & Niessner, R. (1998). TOC-removal and degradation of pollutants in leachate using a thin-film photoreactor. Water Research, 33(4), 937–946.

    Article  Google Scholar 

  141. Chiang, L.-C., Chang, J.-E., & Wen, T.-C. (1994). Indirect oxidation effect in electrochemical oxidation treatment of landfill leachate. Water Research, 29(2), 671–678.

    Article  Google Scholar 

  142. Hamid, M. A., Aziz, H. A., Yusoff, M. S., & Hamid, S. A. R. S. A. (2020). The effects of current density, treatment time and pH on the removal of colour from saline landfill leachate using aluminium electrode in electrocoagulation process. Pollution Research, 39(2), 221–226.

    CAS  Google Scholar 

  143. Hamid, M. A. A., Aziz, H. A., Yusoff, M. S., & Rezan, S. A. (2020). Optimization and analysis of zeolite augmented electrocoagulation process in the reduction of high-strength ammonia in saline landfill leachate. Watermark, 12(1), 247. https://doi.org/10.3390/w12010247

    Article  CAS  Google Scholar 

  144. Hamid, M. A. A., Aziz, H. A., Yusoff, M. S., & Rezan, S. A. (2021). Clinoptilolite augmented electrocoagulation process for the reduction of high-strength ammonia and colour from stabilized landfill leachate. Water Environment Research, 93(4), 596–607.

    Article  CAS  Google Scholar 

  145. Lopez, A., Pagano, M., Volpe, A., & DiPinto, A. C. (2004). Fenton’s pre-treatment of mature landfill leachate. Chemosphere, 54, 1005–1010.

    Article  CAS  Google Scholar 

  146. Bae, J.-H., Kim, S.-K., & Chang, H.-S. (1997). Treatment of landfill leachates: Ammonia removal via nitrification and denitrification and further COD reduction via Fenton’s treatment followed by activated sludge. Water Science and Technology, 36(12), 341–348.

    Article  CAS  Google Scholar 

  147. Lau, I. W. C., Wang, P., & Fang, H. H. P. (2001). Organic removal of anaerobically treated leachate by Fenton coagulation. Journal of Environmental Engineering, 127(7), 666.

    Article  CAS  Google Scholar 

  148. Yoon, J., Cho, S., Cho, Y., & Kim, S. (1998). The characteristics of coagulation of Fenton reaction in the removal of landfill leachate organics. Water Science and Technology, 38(2), 209–214.

    Article  CAS  Google Scholar 

  149. Kang, Y. W., & Hwang, K.-Y. (1999). Effects of reaction conditions on the oxidation efficiency in the Fenton process. Water Research, 34(10), 2786–2790.

    Article  Google Scholar 

  150. Kim, S.-M., Geissen, S.-U., & Vogelpohl, A. (1997). Landfill leachate treatment by a photoassited Fenton reaction. Water Science and Technology, 35(4), 239–248.

    Article  CAS  Google Scholar 

  151. Lin, S. H., & Chang, C. C. (2000). Treatment of landfill leachate by combined electro-Fenton oxidation and sequencing batch reactor method. Water Research, 34(17), 4243–4249.

    Article  CAS  Google Scholar 

  152. Aziz, H. A., & Ramli, S. F. (2018). Recent development in sanitary landfilling and landfill leachate treatment in Malaysia. International Journal of Environmental Engineering, 9(3/4), 201–229.

    Article  Google Scholar 

  153. Sun, Y., Zhou, S., Chiang, P. C., & Shah, K. J. (2019). Evaluation and optimization of enhanced coagulation process: Water and energy nexus. Water-Energy Nexus, 2(1), 25–36.

    Article  Google Scholar 

  154. Sibartie, S., & Ismail, N. (2018). Potential of hibiscus sabdariffa and jatropha curcas as natural coagulants in the treatment of pharmaceutical wastewater. In MATEC web of conferences (Vol. 152, p. 01009). EDP Sciences.

    Google Scholar 

  155. Eddeeb, M. Y., Heikal, G., & El Shahawy, A. (2019). Organic pollutants removal by flocculation process using ferric chloride/cationic polyelectrolyte for wastewater agricultural reuse. Desalination and Water Treatment, 140, 231–244.

    Article  CAS  Google Scholar 

  156. Lee, C. S., Robinson, J., & Chong, M. F. (2014). A review on application of flocculants in wastewater treatment. Process Safety and Environmental Protection, 92(6), 489–508.

    Article  CAS  Google Scholar 

  157. Lee, A. H., Nikraz, H., & Hung, Y. T. (2012). Effect of temperature on performance of a sanitary landfill. In 2012 2nd international conference on environment and industrial innovation IPCBEE (Vol. 35). IACSIT Press.

    Google Scholar 

  158. Rui, L. M., Daud, Z., & Latif, A. A. A. (2012). Treatment of Leachate by coagulation-flocculation using different coagulants and polymer: A review. International Journal on Advanced Science, Engineering and Information Technology, 2(2), 114–117.

    Article  Google Scholar 

  159. Ayoub, G. M., BinAhmed, S. W., Al-Hindi, M., & Azizi, F. (2014). Coagulation of highly turbid suspensions using magnesium hydroxide: Effects of slow mixing conditions. Environmental Science and Pollution Research, 21(17), 10502–10513.

    Article  CAS  Google Scholar 

  160. Tzoupanos, N. D., & Zouboulis, A. I. (2008). Coagulation-flocculation processes in water/wastewater treatment: The application of new generation of chemical reagents. In: 6th IASME/WSEAS International Conference Greece.

    Google Scholar 

  161. Sahu, O. P., & Chaudhari, P. K. (2013). Review on chemical treatment of industrial wastewater. Journal of Applied Sciences and Environmental Management, 17(2), 241–257.

    CAS  Google Scholar 

  162. Ahmad, H., Lafi, W. K., Abushgair, K., & Assbeihat, J. M. (2016). Comparison of coagulation, electrocoagulation and biological techniques for the municipal wastewater treatment. International Journal of Applied Engineering Research, 11(22), 11014–11024.

    Google Scholar 

  163. Omar, M. A., Zin, N. S. M., & Salleh, N. A. M. (2018). A review on performance of chemical, natural and composite coagulant. International Journal of Engineering & Technology, 7(3), 56–60.

    Google Scholar 

  164. Yusoff, M. S., Aziz, H. A., Alazaiza, M. Y., & Rui, L. M. (2019). Potential use of oil palm trunk starch as coagulant and coagulant aid in semi-aerobic landfill leachate treatment. Water Quality Research Journal, 54(3), 203–219.

    Article  CAS  Google Scholar 

  165. Suopajärvi, T., Liimatainen, H., Hormi, O., & Niinimäki, J. (2013). Coagulation–flocculation treatment of municipal wastewater based on anionized nanocelluloses. Chemical Engineering Journal, 231, 59–67.

    Article  CAS  Google Scholar 

  166. Zainol, N. A., Aziz, H. A., Yusoff, M. S., & Umar, M. (2011). The use of polyaluminium chloride for the treatment of landfill leachate via coagulation and flocculation processes. Research Journal of Chemical Sciences, 1(3), 34–39.

    CAS  Google Scholar 

  167. Ahmed, Z., & Yusoff, M. S. (2020). Application of natural coagulants for sustainable treatment of semi-aerobic landfill leachate. AIP Conference Proceedings, 2020, 020024. https://doi.org/10.1063/5.0017406

    Article  CAS  Google Scholar 

  168. Verma, M., & Naresh Kumar, R. (2016). Can coagulation–flocculation be an effective pre-treatment option for landfill leachate and municipal wastewater co-treatment? Perspectives on Science, 8, 492–494. https://doi.org/10.1016/j.pisc.2016.05.005

    Article  Google Scholar 

  169. Reynolds, T. D., & Richards, P. A. (1996). Unit operations and processes in environmental engineering. PWS Publishing Company.

    Google Scholar 

  170. Tillman, G. M. (1996). Water treatment: Troubleshooting and problem solving. Lewis Publishers.

    Google Scholar 

  171. Assou, M., Madinzi, A., Anouzla, A., Aboulhassan, M. A., Souabi, S., & Hafidi, M. (2014). Reducing pollution of stabilized landfill leachate by mixing of coagulants and flocculants: A comparative study. Blood Coagulation, 4(1), 20–25.

    Google Scholar 

  172. Sawyer, C. N., McCarty, P. L., & Parkin, G. F. (1994). Chemistry for environmental engineering. McGraw Hill Inc..

    Google Scholar 

  173. Tsai, C. T., Lin, S. T., Shue, Y. C., & Su, P. L. (1996). Electrolysis of soluble organic matter in leachate from landfills. Water Research, 31(12), 3073–3081.

    Article  Google Scholar 

  174. Wang, J. P., Chen, Y. Z., Ge, X. W., & Yu, H. Q. (2007). Optimization of coagulation-flocculation process for a paper-recycling wastewater treatment using response surface methodology. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 302(1-3), 204–210.

    Article  CAS  Google Scholar 

  175. Zouboulis, A., Traskas, G., & Samaras, P. (2008). Comparison of efficiency between poly-aluminium chloride and aluminium sulphate coagulants during full-scale experiments in a drinking water treatment plant. Separation Science and Technology, 43(6), 1507–1519.

    Article  CAS  Google Scholar 

  176. Samadi, M., Saghi, M., Rahmani, A., Hasanvand, J., Rahimi, S., & Syboney, M. S. (2010). Hamadan landfill leachate treatment by coagulation-flocculation process. Journal of Environmental Health Science & Engineering, 7(3), 253–258.

    CAS  Google Scholar 

  177. Crittenden, J. C., Trussell, R. R., Hand, D. W., Howe, K. J., & Tchobanoglous, G. (2012). MWH’s water treatment: Principles and design. John Wiley & Sons.

    Book  Google Scholar 

  178. Liu, X., Li, X. M., Yang, Q., Yue, X., Shen, T. T., Zheng, W., Luo, K., Sun, Y. H., & Zeng, G. M. (2012). Landfill leachate pretreatment by coagulation-flocculation process using iron-based coagulants: Optimization by response surface methodology. Chemical Engineering Journal, 200, 39–51.

    Article  CAS  Google Scholar 

  179. López-Maldonado, E. A., Oropeza-Guzmán, M. T., & Ochoa-Terán, A. (2014). Improving the efficiency of a coagulation-flocculation wastewater treatment of the semiconductor industry through zeta potential measurements. Journal of Chemistry, 2014, 969720.

    Article  CAS  Google Scholar 

  180. Bratby, J. (2016). Coagulation and flocculation in water and wastewater treatment. IWA Publishing.

    Book  Google Scholar 

  181. Imran, Q., Hanif, M. A., Riaz, M. S., Noureen, S., Ansari, T. M., & Bhatti, H. N. (2012). Coagulation/flocculation of tannery wastewater using immobilized chemical coagulants. Journal of Applied Research and Technology, 10(2), 79–86.

    Google Scholar 

  182. Pillai, J. (1997). Flocculants and coagulants: The keys to water and waste management in aggregate production. Condensed version appeared in December issue of stone review. Nalco Company.

    Google Scholar 

  183. Lapsongpon, T., Leungprasert, S., & Yoshimura, C. (2017). Pre-chlorination contact time and the removal and control of Microcystis aeroginosa in coagulation. IOP Conference Series: Earth and Environmental Science, 67(1), 012011.

    Google Scholar 

  184. Kang, K. H., Shin, H. S., & Park, H. (2002). Characterization of humic substances present in landfill leachates with different landfill ages and its implications. Water Research, 36(16), 4023–4032.

    Article  CAS  Google Scholar 

  185. Ozbelge, T. A., Ozbelge, O. H., & Baskaya, S. Z. (2002). Removal of phenolic compounds from rubber-textile wastewaters by physico-chemical methods. Chemical Engineering and Processing, 41, 719–730.

    Article  CAS  Google Scholar 

  186. Rıos, G., Pazos, C., & Coca, J. (1998). Destabilization of cutting oil emulsions using inorganic salts as coagulants. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 138(2-3), 383–389.

    Article  Google Scholar 

  187. Yusoff, S. M., Zuki, N. A. M., & Zamri, M. F. M. A. (2016). Effectiveness of jackfruit seed starch as coagulant aid in landfill leachate treatment process. International Journal, 11(26), 2684–2687.

    Google Scholar 

  188. Aziz, H. A., Rosli, M. Y., Amr, S. S. A., & Hussain, S. (2015). Potential use of titanium tetrachloride as coagulant to treat semi aerobic leachate treatment. Australian Journal of Basic and Applied Sciences, 9(4), 37–44.

    Google Scholar 

  189. Aziz, H. A., Sahhari, N., Amr, S. S. A., Hussain, S., & Leeuwen, J. V. (2016). Potential use of zirconium (IV) chloride as coagulant to treat semi-aerobic leachate treatment. International Journal of Environment and Waste Management, 18(3), 205–212.

    Article  Google Scholar 

  190. Aziz, H. A., & Sobri, N. I. M. (2015). Extraction and application of starch-based coagulants from sago trunk for semi-aerobic landfill leachate treatment. Environmental Science and Pollution Research, 22(21), 16943–16950.

    Article  CAS  Google Scholar 

  191. Zin, N. S. M., Aziz, H. A., Adlan, N. M., Ariffin, A., Yusoff, M. S., & Dahalan, I. (2013). Removal of colour, suspended solids, COD and ammonia from partially stabilize landfill leachate by using iron chloride through coagulation process. International Journal of Engineering and Technology, 5(6), 736.

    Article  CAS  Google Scholar 

  192. Ramli, S. F., & Aziz, H. A. (2015). Use of ferric chloride and chitosan as coagulant to remove turbidity and colour from landfill leachate. Applied Mechanics and Materials, 773, 1163–1167.

    Article  Google Scholar 

  193. Al-Hamadani, Y. A., Yusoff, M. S., Umar, M., Bashir, M. J., & Adlan, M. N. (2011). Application of psyllium husk as coagulant and coagulant aid in semi-aerobic landfill leachate treatment. Journal of Hazardous Materials, 190(1-3), 582–587.

    Article  CAS  Google Scholar 

  194. Muaz, A. Z., Faiz, M., Suffian, M. Y., & Hamidi, A. A. (2014). The study of flocculant characteristics for landfill leachate treatment using starch based flocculant from Durio Zibethinus seed. Advances in Environmental Biology, 8(15), 129–135.

    Google Scholar 

  195. Rusdizal, N., Aziz, H. A., & Fatehah, M. O. (2015). Potential use of polyaluminium chloride and tobacco leaf as coagulant and coagulant aid in post-treatment of landfill leachate. Avicenna Journal of Environmental Health Engineering, 2(2), 1–5.

    Google Scholar 

  196. Aziz, H. A., Yii, Y. C., Syed Zainal, S. F. F., Ramli, S. F., & Akinbile, C. O. (2018). Effects of using Tamarindus indica seeds as a natural coagulant aid in landfill leachate treatment. Global NEST Journal, 20(2), 373–380.

    Article  CAS  Google Scholar 

  197. Zainol, N. A., Aziz, H. A., & Ibrahim, N. (2013). Treatment of Kulim and Kuala Sepetang landfills leachates in Malaysia using poly-aluminium chloride (PACl). Research Journal of Chemical Sciences, 3(3), 52–57.

    CAS  Google Scholar 

  198. Syafalni, S., Lim, H. K., Ismail, N., Abustan, I., Murshed, M. F., & Ahmad, A. (2012). Treatment of landfill leachate by using lateritic soil as a natural coagulant. Journal of Environmental Management, 112, 353–359.

    Article  CAS  Google Scholar 

  199. Choy, S. Y., Prasad, K. M. N., Wu, T. Y., Raghunandan, M. E., & Ramanan, R. N. (2014). Utilization of plant-based natural coagulants as future alternatives towards sustainable water clarification. Journal of Environmental Sciences, 26(11), 2178–2189. https://doi.org/10.1016/j.jes.2014.09.024

    Article  Google Scholar 

  200. Saravanan, Soundammal, Sudha, & Suriyakala. (2017). Wastewater treatment using natural coagulants. International Journal of Civil Engineering, 4(3), 37–40.

    Google Scholar 

  201. Santos, T. R. T. (2016). Development of a magnetic coagulant based on Moringa oleifera seed extract for water treatment. Environmental Science and Pollution Research, 23(8), 7692–7700. https://doi.org/10.1007/s11356-015-6029-7

    Article  CAS  Google Scholar 

  202. Unda-Calvo, J., & Safety, M. M.-S. (2017). Metal bioaccessibility assessment in surface bottom sediments from the Deba River urban catchment: Harmonization of PBET, TCLP and BCR sequential extraction…. Elsevier.

    Google Scholar 

  203. Auta, H. S., Emenike, C. U., & Fauziah, S. H. (2017). Distribution and importance of microplastics in the marine environment: A review of the sources, fate, effects, and potential solutions. Environment International, 102, 165–176. https://doi.org/10.1016/j.envint.2017.02.013

    Article  CAS  Google Scholar 

  204. Simate, G. S., & Ndlovu, S. (2015). The removal of heavy metals in a packed bed column using immobilized cassava peel waste biomass. Journal of Industrial and Engineering Chemistry, 21, 635–643. https://doi.org/10.1016/j.jiec.2014.03.031

    Article  CAS  Google Scholar 

  205. Aishah, N. O. S. N., & Mohd-Zin, N. S. (2019). A review of wastewater treatment using natural material and its potential as aid and composite coagulant. Sains Malaysiana, 48(1), 155–164. https://doi.org/10.17576/jsm-2019-4801-18

    Article  CAS  Google Scholar 

  206. Nithya, M., & Abirami, M. (2018). The leachate treatment by using natural coagulants (Pine Bark and Chitosan). International Research Journal of Engineering and Technology, 05(4), 2711–2714.

    Google Scholar 

  207. Mohd-Asharuddin, S., Othman, N., Shaylinda, N., Zin, M., & Tajarudin, H. A. (2017). A chemical and morphological study of cassava peel: A potential waste as coagulant aid. MATEC Web of Conferences, 2017, 1–8.

    Google Scholar 

  208. Camacho, F., Sousa, V., & Bergamasco, R. (2017). The use of Moringa oleifera as a natural coagulant in surface water treatment. Elsevier.

    Book  Google Scholar 

  209. Ahmed, Z., Yusoff, M. S., Mokhtar Kamal, N., & Aziz, H. A. (2021). Application of natural starch coagulant followed by membrane filtration for the elimination of colour from stabilized leachate. In Advances in engineering research (Vol. 200, pp. 82–90). ICoST. https://doi.org/10.2991/aer.k.201229.012

    Chapter  Google Scholar 

  210. Mumbi, A. W., Fengting, L., & Karanja, A. (2018). Sustainable treatment of drinking water using natural coagulants in developing countries: A case of informal settlements in Kenya. Water Utility Journal, 18, 11.

    Google Scholar 

  211. Awang, N. A., & Aziz, H. A. (2012). Hibiscus rosa-sinensis leaf extract as coagulant aid in leachate treatment. Applied Water Science, 2, 293–298. https://doi.org/10.1007/s13201-012-0049-y

    Article  CAS  Google Scholar 

  212. Oliveira, Z. L., Lyra, M. R. C. C., Arruda, A. C. F., Silva, A. M. R. B., Nascimento, J. F., & Ferreira, S. R. M. (2016). Efficiency in the treatment of landfill leachate using natural coagulants from the seeds of moringa oleifera lam and abelmoschus esculentus (L.) Moench (Okra). Electronic Journal of Geotechnical Engineering, 21, 9721–9752.

    Google Scholar 

  213. Nur, S. M. Z., & Omar, A. M. (2017). Removals of colour and turbidity from stabilized leachate by using alum and glutinous rice flour dual coagulants. MATEC Web of Conferences, 138, 1–4.

    Google Scholar 

  214. Shaylinda, M. Z. N., Hamidi, A. A., Mohd, N. A., Ariffin, A., Irvan, D., Hazreek, Z. A. M., & Z.M. (2018). Nizam Optimization of composite coagulant made from polyferric chloride and tapioca starch in landfill leachate treatment. Journal of Physics Conference Series, 995, 012019.

    Article  CAS  Google Scholar 

  215. Rasool, M. A., Tavakoli, B., Chaibakhsh, N., Pendashteh, A. R., & Mirroshandel, A. S. (2016). Use of a plant-based coagulant in coagulation–ozonation combined treatment of leachate from a waste dumping site. Ecological Engineering, 90, 431–437.

    Article  Google Scholar 

  216. Wang, Z., et al. (2016). Continuous-flow combined process of nitritation and ANAMMOX for treatment of landfill leachate. Bioresource Technology, 214, 514–519. https://doi.org/10.1016/j.biortech.2016.04.118

    Article  CAS  Google Scholar 

  217. Rada, E., Istrate, I., Ragazzi, M., Andreottola, G., & Torretta, V. (2013). Analysis of electro-oxidation suitability for landfill leachate treatment through an experimental study. Sustainability, 5(9), 3960–3975. https://doi.org/10.3390/su5093960

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hamidi Abdul Aziz .

Editor information

Editors and Affiliations

Glossary

Advanced oxidation process (AOP)

Advanced oxidation processes (AOPs) are a set of chemical treatment procedures designed to remove organic (and sometimes inorganic) materials from water and wastewater by oxidation through reactions with hydroxyl radicals (OH). However, in real-world applications of wastewater treatment, this term usually refers to a subset of such chemical processes that employ ozone (O3), hydrogen peroxide (H2O2), and/or UV light. One such type of process is called in situ chemical oxidation.

Dissolved air flotation (DAF)

Dissolved air flotation (DAF) is a water purification process that removes oil and solids from wastewaters (and other water sources). Air is removed from water or wastewater in a flotation tank basin by dissolving it under pressure and then releasing it at atmospheric pressure. It is possible to remove the suspended matter from the water using a skimming device because of the bubbles formed by the release of air.

DNA

DNA, or deoxyribonucleic acid, is a long molecule that carries our genetic code. It is like a recipe book for the proteins in our bodies, with step-by-by-step instructions.

Municipal solid waste (MSW)

Municipal solid waste refers to waste that is either collected by the municipality or disposed of at a municipal waste disposal site, which includes items such as product packaging, grass clippings, furniture, clothing, bottles, food scraps, newspapers, appliances, paint, and batteries. This comes from our homes, institutions like schools and hospitals, and businesses.

Sequencing batch reactor (SBR)

Sequencing batch reactors (SBR) or sequential batch reactors are activated sludge processes used for wastewater treatment. SBR treat wastewater in batches, such as sewage or the output from anaerobic digesters or mechanical biological treatment facilities. Water and activated sludge are mixed with oxygen to reduce the organic matter (biochemical oxygen demand (BOD) and chemical oxygen demand (COD), respectively). In some cases, treated effluent may be suitable for discharge into surface waters or for use on land.

Van der Waal forces

In general, it describes the attraction of intermolecular forces between molecules. Because of the electric polarization that other particles induce in each particle, only weak attractive forces act on neutral atoms and molecules.

Volatile fatty acids (VFAs)

Volatile fatty acids (VFAs) are linear short-chain aliphatic mono-carboxylate compounds, such as acetic acid, propionic acid, and butyric acid, which are the building blocks of different organic compounds. Two to six carbon atoms are found in VFAs, which include acetic acid and caproic acid. Anaerobic digestion is tightly regulated by VFAs. Methane and carbon dioxide are produced as a result of the decomposition of organic matter.

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Aziz, H.A. et al. (2022). Landfill Leachate Treatment. In: Wang, L.K., Wang, MH.S., Hung, YT. (eds) Solid Waste Engineering and Management. Handbook of Environmental Engineering, vol 25. Springer, Cham. https://doi.org/10.1007/978-3-030-96989-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-96989-9_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-96988-2

  • Online ISBN: 978-3-030-96989-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics