Skip to main content

Viewpoint Selection for Fibrous Structures in a Pre-operative Context: Application to Cranial Nerves Surrounding Skull Base Tumors

  • Conference paper
  • First Online:
Systems, Signals and Image Processing (IWSSIP 2021)

Abstract

In this work, we present a viewpoint selection method specifically designed for fibrous structures in a pre-operative context. A view quality metric based on entropy was developed, which integrates the typical requirements of surgery planning. We applied our approach in the case of cranial nerves surrounding skull base tumors. The relevance of the viewpoints selected by our method was assessed qualitatively by a neurosurgeon and quantitatively based on statistical tests. These viewpoints were proven to have a high informative content, and therefore to enable a good understanding and mental representation the 3D anatomical scene in a pre-operative context.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bonaventura, X., Feixas, M., Sbert, M., Chuang, L., Wallraven, C.: A survey of viewpoint selection methods for polygonal models. Entropy 20(5), 370 (2018)

    Article  MathSciNet  Google Scholar 

  2. Borkar, S.A., et al.: Prediction of facial nerve position in large vestibular schwannomas using diffusion tensor imaging tractography and its intraoperative correlation. Neurol. India 64(5), 965 (2016)

    Article  Google Scholar 

  3. Chan, M.-Y., Qu, H., Wu, Y., Zhou, H.: Viewpoint selection for angiographic volume. In: Bebis, G., et al. (eds.) ISVC 2006. LNCS, vol. 4291, pp. 528–537. Springer, Heidelberg (2006). https://doi.org/10.1007/11919476_53

    Chapter  Google Scholar 

  4. Chen, M., Feixas, M., Viola, I., Bardera, A., Shen, H.W., Sbert, M.: Information Theory Tools for Visualization. CRC Press (2016)

    Google Scholar 

  5. Jacquesson, T., et al.: Probabilistic tractography to predict the position of cranial nerves displaced by skull base tumors: value for surgical strategy through a case series of 62 patients. Neurosurgery 85(1), E125–E13 (2018)

    Article  Google Scholar 

  6. Jacquesson, T., et al.: Overcoming challenges of cranial nerve tractography: a targeted review. Neurosurgery 84(2), 313–325 (2018)

    Article  Google Scholar 

  7. Joo, W., Yoshioka, F., Funaki, T., Rhoton, A.L.: Microsurgical anatomy of the trigeminal nerve. Clin. Anat. 27, 61–88 (2014). https://doi.org/10.1002/ca.22330

    Article  Google Scholar 

  8. Leopardi, P.: A partition of the unit sphere into regions of equal area and small diameter. Electron. Trans. Numer. Anal. 25, 309–327 (2006)

    MathSciNet  MATH  Google Scholar 

  9. Mühler, K., Neugebauer, M., Tietjen, C., Preim, B.: Viewpoint selection for intervention planning. In: EuroVis, pp. 267–274 (2007)

    Google Scholar 

  10. Rhoton, A.L.: Microsurgical anatomy of the posterior fossa cranial nerves. Clin. Neurosurg. 26, 398–462 (1979)

    Article  Google Scholar 

  11. Samii, M., Gerganov, V.M.: Petroclival meningiomas: quo vadis? World Neurosurg. 75(3–4), 424 (2011)

    Article  Google Scholar 

  12. Smith, S.M., et al.: Advances in functional and structural MR image analysis and implementation as FSL. Neuroimage 23, S208–S219 (2004)

    Article  Google Scholar 

  13. Song, F., et al.: In vivo visualization of the facial nerve in patients with acoustic neuroma using diffusion tensor imaging-based fiber tracking. J. Neurosurg. 125(4), 787–794 (2016)

    Article  Google Scholar 

  14. Tournier, J.D., et al.: \(MRtrix3\): a fast, flexible and open software framework for medical image processing and visualisation. Neuroimage 202, 116137 (2019)

    Article  Google Scholar 

  15. Xu, C., Prince, J.L.: Snakes, shapes, and gradient vector flow. IEEE Trans. Image Process. 7, 359–369 (1998)

    Article  MathSciNet  Google Scholar 

  16. Yoshino, M., et al.: Visualization of cranial nerves using high-definition fiber tractography. Neurosurgery 79, 146–165 (2016). https://doi.org/10.1227/NEU.0000000000001241

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carole Frindel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Decroocq, M., Ligneris, M.D., Jacquesson, T., Frindel, C. (2022). Viewpoint Selection for Fibrous Structures in a Pre-operative Context: Application to Cranial Nerves Surrounding Skull Base Tumors. In: Rozinaj, G., Vargic, R. (eds) Systems, Signals and Image Processing. IWSSIP 2021. Communications in Computer and Information Science, vol 1527. Springer, Cham. https://doi.org/10.1007/978-3-030-96878-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-96878-6_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-96877-9

  • Online ISBN: 978-3-030-96878-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics