Skip to main content

Supervised Mixture Analysis and Source Detection from Multimodal Measurements

  • Conference paper
  • First Online:
Systems, Signals and Image Processing (IWSSIP 2021)

Abstract

This paper presents a method for source detection within unknown chemical mixtures using several spectroscopy measurement modalities. Contrary to the well studied case of single source detection, this approach enables simultaneous detection of multiple chemical components by exploiting the mixing coefficients resulting from supervised linear unmixing and thresholded non-negative least-squares. The first contribution of this work is to propose an automated procedure to compute an optimized binary classifier rule for each component independently using a database of known mixtures. The second contribution is to propose a global decision rule based on the fusion of the multimodal decisions using weighting schemes such as those used in multiple classifier systems (MCS). A real database of Ion Mobiliy Mass Spectrometry (IMMS) data is used to evaluate the detection performance. The main result is to reach an increase of the detection accuracy using the multiple thresholds within the independent classifiers approach as compared to single modality detection.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bioucas-Dias, J.M., Figueiredo, M.A.T.: Alternating direction algorithms for constrained sparse regression: application to hyperspectral unmixing. In: 2010 2nd Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing, pp. 1–4 (2010)

    Google Scholar 

  2. Blumensath, T., Davies, M.: Iterative thresholding for sparse approximations. J. Fourier Anal. Appl. 14, 629–654 (2008)

    Article  MathSciNet  Google Scholar 

  3. Boland, P.: Majority systems and the condorcet jury theorem. Stat. 38, 181 (1989)

    Google Scholar 

  4. Chouzenoux, E., Legendre, M., Moussaoui, S., Idier, J.: Fast constrained least squares spectral unmixing using primal-dual interior-point optimization. IEEE J. Sel. Topics Appl. Earth Obs. 7(1), 59–69 (2014)

    Article  Google Scholar 

  5. Cotter, S.F., Rao, B.D., Engan, K., Kreutz-Delgado, K.: Sparse solutions to linear inverse problems with multiple measurement vectors. IEEE Trans. Signal Process. 53(7), 2477–2488 (2005)

    Article  MathSciNet  Google Scholar 

  6. Duarte, L.T., Moussaoui, S., Jutten, C.: Source separation in chemical analysis: recent achievements and perspectives. IEEE Signal Process. Mag. 31(3), 135–146 (2014)

    Article  Google Scholar 

  7. Fauvel, M., Chanussot, J., Benediktsson, J.A.: Decision fusion for the classification of urban remote sensing images. IEEE Trans. Geosci. Remote Sens. 44(10), 2828–2838 (2006)

    Article  Google Scholar 

  8. Giacinto, G., Roli, F.: Adaptive selection of image classifiers. In: Del Bimbo, A. (ed.) ICIAP 1997. LNCS, vol. 1310, pp. 38–45. Springer, Heidelberg (1997). https://doi.org/10.1007/3-540-63507-6_182

    Chapter  Google Scholar 

  9. Ho, T.K., Hull, J.J., Srihari, S.N.: Decision combination in multiple classifier systems. IEEE Trans. Pattern Anal. Mach. Intell. 16(1), 66–75 (1994)

    Article  Google Scholar 

  10. Horsch, S., Kopczynski, D., Kuthe, E., Baumbach, J.I., Rahmann, S., Rahnenfü, J.: A detailed comparison of analysis processes for MCC-IMS data in disease classification-automated methods can replace manual peak annotations. PLOS ONE 12(9), 1–16 (2017)

    Article  Google Scholar 

  11. Jeon, B., Landgrebe, D.A.: Decision fusion approach for multitemporal classification. IEEE Trans. Geosci. Remote Sens. 37(3), 1227–1233 (1999)

    Article  Google Scholar 

  12. Kanu, A.B., Dwivedi, P., Tam, M., Matz, L., Hill, H.H., Jr.: Ion mobility-mass spectrometry. J. Mass Spectrom. 43(1), 1–22 (2008)

    Article  Google Scholar 

  13. Kopczynski, D., Baumbach, J.I., Rahmann, S.: Peak modeling for ion mobility spectrometry measurements. In: Proceedings of the 20th European Signal Processing Conference (EUSIPCO), pp. 1801–1805 (2012)

    Google Scholar 

  14. Kubat, M., Matwin, S., et al.: Addressing the curse of imbalanced training sets: one-sided selection. In: ICML, Nashville, USA, vol. 97, pp. 179–186 (1997)

    Google Scholar 

  15. Kuncheva, L.: Combining Pattern Classifiers: Methods and Algorithms. John Wiley & Sons, Hoboken (2014)

    MATH  Google Scholar 

  16. Lawson, C.L., Hanson, R.J.: Solving Least Squares Problems. SIAM, Philadelphia (1995)

    Book  Google Scholar 

  17. Manolakis, D., Shaw, G.: Detection algorithms for hyperspectral imaging applications. IEEE Signal Process. Mag. 19, 29–43 (2002)

    Article  Google Scholar 

  18. Marczyk, M., Polanska, J., Polanski, A.: Improving peak detection by gaussian mixture modeling of mass spectral signal. In: 2017 3rd International Conference on Frontiers of Signal Processing (ICFSP), pp. 39–43 (2017)

    Google Scholar 

  19. Moreno-Seco, F., Iñesta, J.M., de León, P.J.P., Micó, L.: Comparison of classifier fusion methods for classification in pattern recognition tasks. In: Yeung, D.-Y., Kwok, J.T., Fred, A., Roli, F., de Ridder, D. (eds.) SSPR /SPR 2006. LNCS, vol. 4109, pp. 705–713. Springer, Heidelberg (2006). https://doi.org/10.1007/11815921_77

    Chapter  Google Scholar 

  20. Nguyen, T.T., Idier, J., Soussen, C., Djermoune, E.: Non-negative orthogonal greedy algorithms. IEEE Trans. Signal Process. 67(21), 5643–5658 (2019)

    Article  Google Scholar 

  21. Pomareda, V., Calvo, D., Pardo, A., Marco, S.: Hard modeling multivariate curve resolution using lasso: application to ion mobility spectra. Chemom. Intell. Lab. Syst. 104(2), 318–332 (2010)

    Article  Google Scholar 

  22. Ponthus, J., Riches, E.: Evaluating the multiple benefits offered by ion mobility-mass spectrometry in oil and petroleum analysis. Int. J. Ion Mobility Spectrom. 16(2), 95–103 (2013)

    Article  Google Scholar 

  23. Powers, D.: Evaluation: from precision, recall and F-factor to ROC, informedness, markedness & correlation. J. Mach. Learn. Technol. 2, 37–63 (2011)

    Google Scholar 

  24. Scharf, L.L., Friedlander, B.: Matched subspace detectors. IEEE Trans. Signal Process. 42(8), 2146–2157 (1994)

    Article  Google Scholar 

  25. Slawski, M., Hein, M.: Sparse recovery by thresholded non-negative least squares. In: Proceedings of the 24th International Conference on Neural Information Processing Systems (NIPS 2011), pp. 1926–1934. Curran Associates Inc., Red Hook (2011)

    Google Scholar 

  26. Szymańska, E., Davies, A.N., Buydens, L.M.: Chemometrics for ion mobility spectrometry data: recent advances and future prospects. Analyst 141(20), 5689–5708 (2016)

    Article  Google Scholar 

  27. Tropp, J., Gilbert, A., Strauss, M.: Algorithms for simultaneous sparse approximation. Part i: greedy pursuit. Signal Process. 86, 572–588 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saïd Moussaoui .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lefeuvre, J., Moussaoui, S., Grosset, L., Siqueira, A.L.M., Delayens, F. (2022). Supervised Mixture Analysis and Source Detection from Multimodal Measurements. In: Rozinaj, G., Vargic, R. (eds) Systems, Signals and Image Processing. IWSSIP 2021. Communications in Computer and Information Science, vol 1527. Springer, Cham. https://doi.org/10.1007/978-3-030-96878-6_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-96878-6_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-96877-9

  • Online ISBN: 978-3-030-96878-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics