Abstract
This paper presents a method for source detection within unknown chemical mixtures using several spectroscopy measurement modalities. Contrary to the well studied case of single source detection, this approach enables simultaneous detection of multiple chemical components by exploiting the mixing coefficients resulting from supervised linear unmixing and thresholded non-negative least-squares. The first contribution of this work is to propose an automated procedure to compute an optimized binary classifier rule for each component independently using a database of known mixtures. The second contribution is to propose a global decision rule based on the fusion of the multimodal decisions using weighting schemes such as those used in multiple classifier systems (MCS). A real database of Ion Mobiliy Mass Spectrometry (IMMS) data is used to evaluate the detection performance. The main result is to reach an increase of the detection accuracy using the multiple thresholds within the independent classifiers approach as compared to single modality detection.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Bioucas-Dias, J.M., Figueiredo, M.A.T.: Alternating direction algorithms for constrained sparse regression: application to hyperspectral unmixing. In: 2010 2nd Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing, pp. 1–4 (2010)
Blumensath, T., Davies, M.: Iterative thresholding for sparse approximations. J. Fourier Anal. Appl. 14, 629–654 (2008)
Boland, P.: Majority systems and the condorcet jury theorem. Stat. 38, 181 (1989)
Chouzenoux, E., Legendre, M., Moussaoui, S., Idier, J.: Fast constrained least squares spectral unmixing using primal-dual interior-point optimization. IEEE J. Sel. Topics Appl. Earth Obs. 7(1), 59–69 (2014)
Cotter, S.F., Rao, B.D., Engan, K., Kreutz-Delgado, K.: Sparse solutions to linear inverse problems with multiple measurement vectors. IEEE Trans. Signal Process. 53(7), 2477–2488 (2005)
Duarte, L.T., Moussaoui, S., Jutten, C.: Source separation in chemical analysis: recent achievements and perspectives. IEEE Signal Process. Mag. 31(3), 135–146 (2014)
Fauvel, M., Chanussot, J., Benediktsson, J.A.: Decision fusion for the classification of urban remote sensing images. IEEE Trans. Geosci. Remote Sens. 44(10), 2828–2838 (2006)
Giacinto, G., Roli, F.: Adaptive selection of image classifiers. In: Del Bimbo, A. (ed.) ICIAP 1997. LNCS, vol. 1310, pp. 38–45. Springer, Heidelberg (1997). https://doi.org/10.1007/3-540-63507-6_182
Ho, T.K., Hull, J.J., Srihari, S.N.: Decision combination in multiple classifier systems. IEEE Trans. Pattern Anal. Mach. Intell. 16(1), 66–75 (1994)
Horsch, S., Kopczynski, D., Kuthe, E., Baumbach, J.I., Rahmann, S., Rahnenfü, J.: A detailed comparison of analysis processes for MCC-IMS data in disease classification-automated methods can replace manual peak annotations. PLOS ONE 12(9), 1–16 (2017)
Jeon, B., Landgrebe, D.A.: Decision fusion approach for multitemporal classification. IEEE Trans. Geosci. Remote Sens. 37(3), 1227–1233 (1999)
Kanu, A.B., Dwivedi, P., Tam, M., Matz, L., Hill, H.H., Jr.: Ion mobility-mass spectrometry. J. Mass Spectrom. 43(1), 1–22 (2008)
Kopczynski, D., Baumbach, J.I., Rahmann, S.: Peak modeling for ion mobility spectrometry measurements. In: Proceedings of the 20th European Signal Processing Conference (EUSIPCO), pp. 1801–1805 (2012)
Kubat, M., Matwin, S., et al.: Addressing the curse of imbalanced training sets: one-sided selection. In: ICML, Nashville, USA, vol. 97, pp. 179–186 (1997)
Kuncheva, L.: Combining Pattern Classifiers: Methods and Algorithms. John Wiley & Sons, Hoboken (2014)
Lawson, C.L., Hanson, R.J.: Solving Least Squares Problems. SIAM, Philadelphia (1995)
Manolakis, D., Shaw, G.: Detection algorithms for hyperspectral imaging applications. IEEE Signal Process. Mag. 19, 29–43 (2002)
Marczyk, M., Polanska, J., Polanski, A.: Improving peak detection by gaussian mixture modeling of mass spectral signal. In: 2017 3rd International Conference on Frontiers of Signal Processing (ICFSP), pp. 39–43 (2017)
Moreno-Seco, F., Iñesta, J.M., de León, P.J.P., Micó, L.: Comparison of classifier fusion methods for classification in pattern recognition tasks. In: Yeung, D.-Y., Kwok, J.T., Fred, A., Roli, F., de Ridder, D. (eds.) SSPR /SPR 2006. LNCS, vol. 4109, pp. 705–713. Springer, Heidelberg (2006). https://doi.org/10.1007/11815921_77
Nguyen, T.T., Idier, J., Soussen, C., Djermoune, E.: Non-negative orthogonal greedy algorithms. IEEE Trans. Signal Process. 67(21), 5643–5658 (2019)
Pomareda, V., Calvo, D., Pardo, A., Marco, S.: Hard modeling multivariate curve resolution using lasso: application to ion mobility spectra. Chemom. Intell. Lab. Syst. 104(2), 318–332 (2010)
Ponthus, J., Riches, E.: Evaluating the multiple benefits offered by ion mobility-mass spectrometry in oil and petroleum analysis. Int. J. Ion Mobility Spectrom. 16(2), 95–103 (2013)
Powers, D.: Evaluation: from precision, recall and F-factor to ROC, informedness, markedness & correlation. J. Mach. Learn. Technol. 2, 37–63 (2011)
Scharf, L.L., Friedlander, B.: Matched subspace detectors. IEEE Trans. Signal Process. 42(8), 2146–2157 (1994)
Slawski, M., Hein, M.: Sparse recovery by thresholded non-negative least squares. In: Proceedings of the 24th International Conference on Neural Information Processing Systems (NIPS 2011), pp. 1926–1934. Curran Associates Inc., Red Hook (2011)
Szymańska, E., Davies, A.N., Buydens, L.M.: Chemometrics for ion mobility spectrometry data: recent advances and future prospects. Analyst 141(20), 5689–5708 (2016)
Tropp, J., Gilbert, A., Strauss, M.: Algorithms for simultaneous sparse approximation. Part i: greedy pursuit. Signal Process. 86, 572–588 (2006)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 Springer Nature Switzerland AG
About this paper
Cite this paper
Lefeuvre, J., Moussaoui, S., Grosset, L., Siqueira, A.L.M., Delayens, F. (2022). Supervised Mixture Analysis and Source Detection from Multimodal Measurements. In: Rozinaj, G., Vargic, R. (eds) Systems, Signals and Image Processing. IWSSIP 2021. Communications in Computer and Information Science, vol 1527. Springer, Cham. https://doi.org/10.1007/978-3-030-96878-6_19
Download citation
DOI: https://doi.org/10.1007/978-3-030-96878-6_19
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-96877-9
Online ISBN: 978-3-030-96878-6
eBook Packages: Computer ScienceComputer Science (R0)