Skip to main content

Design and Ergonomics of Microsurgical Instruments

  • Chapter
  • First Online:
Microsurgery in Periodontal and Implant Dentistry

Abstract

Instrument design in microsurgery has evolved mainly as an organic logistic response to the inherent progression in the operational demands by surgeons and their teams across different medical and dental disciplines. The understanding of the function of the human hand and the role played by its complex neuromotor framework, which fuels unparalleled motion and sensory capabilities, have been fundamental to translate the concept behind microsurgical instruments becoming natural extensions of the human body.

A well-designed microsurgical instrument ought to enable a stable grip, facilitate fine rotatory movements, provide feedback of the position of the instrument and how it is interacting with the elements of the surgical field, and minimize triggering tremors due to operational fatigue. Quality of materials utilized for crafting these instruments, along with the size, shape, and texture of the handle will ultimately determine the quality of that symbiotic relationship that exists between the hand and the instrument itself.

Understanding the intricacies of instrument design and how it interacts with the gloved hand of the microsurgeon ought to help make decisions relevant to acquisition and care of armamentarium that will ultimately facilitate the execution of tasks and enhance surgical performance when utilizing the operating microscope.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Atkins JL, Kalu PU, Lannon DA, Green CJ, Butler PE. Training in microsurgical skills: does course-based learning deliver? Microsurgery. 2005;25:481–5.

    Article  PubMed  Google Scholar 

  2. Gallagher AG, Smith CD. From the operating room of the present to the operating room of the future. Human-factors lessons learned from the minimally invasive surgery revolution. Semin Laparosc Surg. 2003;10:127–39.

    PubMed  Google Scholar 

  3. Wilson FR. The hand. How its use shapes the brain, language, and human culture. 1st ed. New York: Vintage; 1999. p. 15p.

    Google Scholar 

  4. Marzke MW, Marzke RF. Evolution of the human hand: approaches to acquiring, analysing and interpreting the anatomical evidence. J Anat. 2000;197:121–40.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Young RW. Evolution of the human hand: the role of throwing and clubbing. J Anat. 2003;202:165–77.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Napier JR. The human hand. Burlington, NC: Carolina Biological Supply; 1976. p. 16p.

    Google Scholar 

  7. Jones LA, Lederman SJ. Human hand function. Oxford, NY: Oxford University Press; 2006. p. 18p.

    Book  Google Scholar 

  8. Reid DA. Reconstruction of thumb. J Bone Jt Surg. 1960;42B:444–65.

    Article  Google Scholar 

  9. Marzke MW. Precision grips, hand morphology, and tools. Am J Phys Anthropol. 1997;102:91–110.

    Article  PubMed  Google Scholar 

  10. Abdo JL, Sopko NA, Milner SM. The applied anatomy of human skin: a model for regeneration. Wound Med. 2020;28:1–10.

    Article  Google Scholar 

  11. Küken M, Newell AC. Finger print formation. J Theor Biol. 2005;235:71–83.

    Article  Google Scholar 

  12. Misumi Y, Akiyoshi T. Scanning electron microscopic structure of the finger print. Anat Rec. 1984;208:49–55.

    Article  PubMed  Google Scholar 

  13. Petrovic A, Petrovic V, Milojkovic B, Nikolic I, Jovanovic D, Antovic A, Milic M. Immunohistochemical distribution of Ki67 in epidermis of thick glabrous skin of human digits. Arch Dermatol Res. 2017;310:85–93.

    Article  PubMed  Google Scholar 

  14. Thomine JM. The skin of the hand. In: Tubiana R, editor. The hand. Philadelphia: Saunders; 1981. p. 107–15.

    Google Scholar 

  15. Dzidek B, Bochereau S, Johnson SA, Hayward V, Adams MJ. Why pens have rubbery grips. Proc Natl Acad Sci U S A. 2017;114:10864–9.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Johansson RS, Vallbo AB. Tactile sensory coding in the glabrous skin of the human hand. TINS. 1983;6:27–32.

    Google Scholar 

  17. Johnson KO. The roles and functions of cutaneous mechanoreceptors. Curr Opin Neurobiol. 2001;11:455–61.

    Article  PubMed  Google Scholar 

  18. Vallbo AB, Johansson RS. Properties of cutaneous mechanoreceptors in the human hand related to touch sensation. Hum Neurobiol. 1984;3:3–14.

    PubMed  Google Scholar 

  19. Cevikbas F, Lerner EA. Physiology and pathophysiology of itch. Physiol Rev. 2020;100:945–82.

    Article  PubMed  Google Scholar 

  20. Sutherling WW, Levesque MF, Baumgartner C. Cortical sensory representation of the human hand: size of finger regions and nonoverlapping digit somatotopy. Neurology. 1992;42:1020–8.

    Article  PubMed  Google Scholar 

  21. Buonomano DV, Merzenich MM. Cortical plasticity: from synapses to maps. Annu Rev Neurosci. 1998;21:149–86.

    Article  PubMed  Google Scholar 

  22. Schmidt-Wilcke T, Wulms N, Heba S, Pleger B, Puts NA, Glaubitz B, Kalisch T, Tegenthoff M, Dinse HR. Structural changes in brain morphology induced by brief periods of repetitive sensory stimulation. NeuroImage. 2018;165:148–57.

    Article  PubMed  Google Scholar 

  23. Herholz SC, Zatorre RJ. Musical training as a framework for brain plasticity: behavior, function, and structure. Neuron. 2012;76:486–502.

    Article  PubMed  Google Scholar 

  24. Münte TF, Altenmüller E, Jäncke L. The musician’s brain as a model of neuroplasticity. Neuroscience. 2002;3:473–8.

    PubMed  Google Scholar 

  25. Elbert T, Pantev C, Wienbruch C, Rockstroh B, Taub E. Increased cortical representation of the fingers of the left hand in string players. Science. 1995;270:305–7.

    Article  PubMed  Google Scholar 

  26. Ragert P, Schmidt A, Altenmüller E, Dinse HR. Superior tactile performance and learning in professional pianists: evidence for meta-plasticity in musicians. Eur J Neurosci. 2004;19:473–8.

    Article  PubMed  Google Scholar 

  27. Johansson RS, Westling G. Roles of glabrous skin receptors and sensorimotor memory in automatic control of precision grip when lifting rougher or more slippery objects. Exp Brain Res. 1984;56:550–64.

    Article  PubMed  Google Scholar 

  28. Macefield VG, Häger-Ross C, Johansson RS. Control of grip force during restraint of an object held between finger and thumb: responses of cutaneous afferents from the digits. Exp Brain Res. 1996;108:155–71.

    PubMed  Google Scholar 

  29. Weinstein S. Intensive and extensive aspects of tactile sensitivity as a function of body part, sex, and laterality. In: Kenshalo DR, editor. International symposium on the skin senses. Springfield: C.C. Thomas; 1968. p. 195–222.

    Google Scholar 

  30. Peters RM, Hackeman E, Goldreich E. Diminutive digits discern delicate details: fingertip size and the sex difference in tactile spatial acuity. J Neurosci. 2009;29:15756–61.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Scheibert J, Leurent S, Prevost A, Debrégeas G. The role of fingerprints in the coding of tactile information probed with a biomimetic sensor. Science. 2009;323:1503–6.

    Article  PubMed  Google Scholar 

  32. Gerling GJ, Thomas GW. Fingerprint lines may not directly affect SA-I mechanoreceptor response. Somatosens Mot Res. 2008;25:61–76.

    Article  PubMed  Google Scholar 

  33. Stevens JC, Patterson MQ. Dimensions of spatial acuity in the touch sense: changes over the life span. Somatosens Mot Res. 1995;12:29–47.

    Article  PubMed  Google Scholar 

  34. Edin BB, Johansson N. Skin strain patterns provide kinaesthetic information to the human central nervous system. J Physiol. 1995;487:243–51.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Klatzky RL, Loomis JM, Lederman SJ, Wake H, Fujita N. Haptic identification of objects and pictures of objects. Percept Psychophys. 1993;54:170–8.

    Article  PubMed  Google Scholar 

  36. Verrillo RT, Bolanowski SJ, McGlone FP. Subjective magnitude estimate of tactile roughness. Somatosens Mot Res. 1999;16:352–60.

    Article  PubMed  Google Scholar 

  37. Cutkosky MR, Howe RD. Human grasp choice and robotic grasp analysis. In: Venkataraman ST, Iberall T, editors. Dextrous robot hands. 1st ed. New York: Springer; 1990. p. 5–31.

    Google Scholar 

  38. Patkin M. Ergonomics in microsurgery. In: Olszewski WL, editor. CRC handbook of microsurgery. Boca Raton (FL): CRC Press; 1989. Chapter 1, p. 13–26.

    Google Scholar 

  39. Serina ER, Mote CD, Rempel D. Force response of the fingertip pulp to repeated compression: effects of loading rate, loading angle, and anthropometry. J Biomech. 1997;30:1035–40.

    Article  PubMed  Google Scholar 

  40. Westling G, Johansson RS. Responses in glabrous skin mechanoreceptors during precision grip in humans. Exp Brain Res. 1987;66:128–40.

    Article  PubMed  Google Scholar 

  41. Lemon RN. Neural control of dexterity: what has been achieved? Exp Brain Res. 1999;128:6–12.

    Article  PubMed  Google Scholar 

  42. Stone R, McCloy R. Ergonomics in medicine and surgery. BMJ. 2004;328:1115–8.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Tubiana R, Thomine JM, Mackin E. Examination of the hand and wrist. 2nd ed. London: Martin Dunitz Ltd; 1998. p. 402.

    Book  Google Scholar 

  44. Johansson RS, Westling G. Programmed and triggered actions to rapid load changes during precision grip. Exp Brain Res. 1988;71:72–86.

    Google Scholar 

  45. Buchholz B, Frederick LJ, Armstrong TJ. An investigation of human palmar skin friction and the effects of materials, pinch force and moisture. Ergonomics. 1988;31:317–25.

    Article  PubMed  Google Scholar 

  46. Goodwin AW, Wheat HE. Magnitude estimation of contact force when objects with different shapes are applied passively to the fingerpad. Somatosens Mot Res. 1992;9:339–44.

    Article  PubMed  Google Scholar 

  47. Lederman SJ, Klatzky RL. Haptic perception: A tutorial. Atten Percept Psychophys. 2009;71:1439–59.

    Article  PubMed  Google Scholar 

  48. Adams MJ, Johnson SA, Lefèvre P, Lévesque V, Hayward V, André T, Thonnard JL. Finger pad friction and its role in grip and touch. J R Soc Interface. 2012;10:20120467.

    Article  PubMed  Google Scholar 

  49. Goodwin AW, Macefield VG, Bisley JW. Encoding of object curvature by tactile afferents from human fingers. J Neurophysiol. 1997;78:2881–8.

    Article  PubMed  Google Scholar 

  50. Jenmalm P, Goodwin AW, Johansson RS. Control of grasp stability when humans lift objects with different surface curvatures. J Neurophysiol. 1998;79:1643–52.

    Article  PubMed  Google Scholar 

  51. Charpentier A. Experimental study of some aspects of weight perception. Arch Physiol Norm Path. 1891;3:122–35.

    Google Scholar 

  52. Ellis RR, Lederman SJ. The material weight illusion revisited. Percept Psychophys. 1999;61:1564–76.

    Article  PubMed  Google Scholar 

  53. Salimi I, Hollender I, Frazier W, Gordon AM. Specificity of internal representations underlying grasping. J Neurophysiol. 2000;84:2390–7.

    Article  PubMed  Google Scholar 

  54. Matthews PB. The contrasting stretch reflex responses of the long and short flexor muscles in the human thumb. J Physiol. 1984;348:545–58.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Saels P, Thonnard JL, Detrembleur C, Smith AM. Impact of the surface slipperiness of grasped objects on their subsequent acceleration. Neuropsychologia. 1999;37:751–6.

    Article  PubMed  Google Scholar 

  56. Cadoret G, Smith AM. Friction, not texture, dictates grip forces used during object manipulation. J Neurophysiol. 1996;75:1963–9.

    Article  PubMed  Google Scholar 

  57. Hollins M, Risner SR. Evidence for the duplex theory of tactile texture perception. Percept Psychophys. 2000;62:695–705.

    Article  PubMed  Google Scholar 

  58. Monzée J, Lamarre Y, Smith AM. The effects of digital anesthesia on force control using a precision grip. J Neurophysiol. 2003;89:672–83.

    Article  PubMed  Google Scholar 

  59. Taylor M, Lederman SJ. Tactile roughness of grooved surfaces: a model and the effect of friction. Atten Percept Psychophys. 1975;17:23–36.

    Article  Google Scholar 

  60. Yip E, Cacioli P. The manufacture of gloves from natural rubber latex. J Allergy Clin Immunol. 2002;110(2):s3–s14.

    Article  PubMed  Google Scholar 

  61. Mylon P, Lewis R, Carré MJ, Martin N. A critical review of glove and hand research with regard to medical glove design. Ergonomics. 2014;57:116–29.

    Article  PubMed  Google Scholar 

  62. Preece D, Lewis R, Carré MJ. A critical review of the assessment of medical gloves. Tribol—Mater Surf Interfaces. 2021;15:10–9.

    Article  Google Scholar 

  63. Mylon P, Buckley-Johnstone L, Lewis R, Carré MJ, Martin N. Factors influencing the perception of roughness in manual exploration. Do medical gloves reduce cutaneous sensibility? Proc Inst Mech. Eng., Part J. 2015;229:273–84.

    Article  Google Scholar 

  64. Park SB, Davare M, Falla M, Kennedy WR, Selim MM, Wendelschafer-Crabb G, Koltzenburg M. Fast-adapting mechanoreceptors are important for force control in precision grip but not for sensorimotor memory. J Neurophysiol. 2016;115:3156–61.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Saal HP, Bensmaia SJ. Touch is a team effort: interplay of submodalities in cutaneous sensibility. Trends Neurosci. 2014;37:689–97.

    Article  PubMed  Google Scholar 

  66. Johansson RS, Flanagan JR. Coding and use of tactile signals from the fingertips in object manipulation tasks. Nat Rev Neurosci. 2009;10:345–59.

    Article  PubMed  Google Scholar 

  67. Kopka A, Crawford JM, Broome IJ. Anaesthetists should wear gloves – touch sensitivity is improved with a new type of glove. Acta Anaesthesiol Scand. 2005;49:459–62.

    Article  PubMed  Google Scholar 

  68. Han CD, Kim J, Moon SH, et al. A randomized prospective study of glove perforation in orthopedic surgery: is a thick glove more effective? J Arthroplast. 2013;28:1878–81.

    Article  Google Scholar 

  69. Hatzfeld CH, Dorsch S, Neupert C, Kupnik M. Influence of surgical gloves on haptic perception thresholds. Int J Med Robotics Comput Assist Surg. 2017;14(2):e1852. https://doi.org/10.1002/rcs.1852.

    Article  Google Scholar 

  70. Rock KM, Mikat RP, Foster C. The effects of gloves on grip strength and three-point pinch. J Hand Ther. 2001;14:286–90.

    Article  PubMed  Google Scholar 

  71. Kinoshita H. Effect of gloves on prehensile forces during lifting and holding tasks. Ergonomics. 1999;42:1372–85.

    Article  PubMed  Google Scholar 

  72. Laroche CH, Barra A, Dong H, Rempel D. Effect of dental tool surface texture and material on static friction with a wet gloved fingertip. J Biomech. 2007;40:697–701.

    Article  PubMed  Google Scholar 

  73. Nelson JB, Mital A. An ergonomic evaluation of dexterity and tactility with increase in examination surgical glove thickness. Ergonomics. 1995;38:723–33.

    Article  PubMed  Google Scholar 

  74. Fry DE, Harris WE, Kohnke EN, Twomey CL. Influence of double-gloving on manual dexterity and tactile sensation. J Am Coll Surg. 2010;210:325–30.

    Article  PubMed  Google Scholar 

  75. Mylon P, Lewis R, Carré MJ, et al. A study of clinicians’ views on medical gloves and their effect on manual performance. Am J Infect Control. 2014;42:48–54.

    Article  PubMed  Google Scholar 

  76. Sawyer J, Bennett A. Comparing the level of dexterity offered by latex and nitrile safe skin gloves. Ann Occup Hyg. 2006;50:289–96.

    Article  PubMed  Google Scholar 

  77. Romano D, Caffa E, Hernandez-Arieta A, Brugger P, Maravita A. The robot hand illusion: inducing proprioceptive drift through visuo-motor congruency. Neuropsychologia. 2015;70:414–20.

    Article  PubMed  Google Scholar 

  78. Serino A, Bassolino M, Farnè A, Làdavas E. Extended multisensory space in blind cane users. Psychol Sci. 2007;18:642–8.

    Article  PubMed  Google Scholar 

  79. Martel M, Cardinalic L, Roy AC, Farnè A. Tool-use: an open window into body representation and its plasticity. Cogn Neuropsychol. 2016;33:82–101.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Graziano MS, Cooke DF. Parieto-frontal interactions, personal space, and defensive behavior. Neuropsychologia. 2006;44:845–59.

    Article  PubMed  Google Scholar 

  81. Medina J, Coslett HB. From maps to form to space: touch and the body schema. Neuropsychologia. 2010;48:645–54.

    Article  PubMed  Google Scholar 

  82. Shenton JT, Schwoebel J, Coslett HB. Mental motor imagery and the body schema: evidence for proprioceptive dominance. Neurosci Lett. 2004;370:19–24.

    Article  PubMed  Google Scholar 

  83. Saal HP, Delhayea BP, Rayhauna BC, Bensmaia SJ. Simulating tactile signals from the whole hand with millisecond precision. Proc Natl Acad Sci U S A. 2017;114:E5693–702.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Miller LE, Montroni L, Koun E, Salemme R, Hayward V, Farnè A. Sensing with tools extends somatosensory processing beyond the body. Nature. 2018;561:239–42.

    Article  PubMed  Google Scholar 

  85. de Vignemont F. Embodiment, ownership and disownership. Conscious Cogn. 2011;20:82–93.

    Article  PubMed  Google Scholar 

  86. Arbib MA, Bonaiuto JB, Jacobs S, Frey SH. Tool use and the distalization of the end-effector. Psychol Res. 2009;73:441–62.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The support in photography and the expertise in graphic design of Mrs. Idoia Felis as well as her meticulous preparation of the figures are highly appreciated. Likewise, the personal communications with Dr. Susan Lederman and Dr. Lynette Jones helped to find the relevant basic literature and are highly acknowledged. Thanks to their recommendations, the contact to the currently leading researchers in the field was possible.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Burkhardt, R. (2022). Design and Ergonomics of Microsurgical Instruments. In: Chan, HL.(., Velasquez-Plata, D. (eds) Microsurgery in Periodontal and Implant Dentistry. Springer, Cham. https://doi.org/10.1007/978-3-030-96874-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-96874-8_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-96873-1

  • Online ISBN: 978-3-030-96874-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics