Skip to main content

The Impact of a Minimally Invasive Approach on Oral Wound Healing

  • Chapter
  • First Online:
Microsurgery in Periodontal and Implant Dentistry
  • 618 Accesses

Abstract

Wound healing is a spontaneous occurring process in a state of hemostasis. Surgical interventions rely on the stages and processes naturally orchestrated by the host and influenced by the operator in the surgical theater.

Biological pathways to mucosal wound repair and regeneration are staged and defined as a preamble to the impact of the microsurgical technique on healing processes of oral wounds, emphasizing the relevancy of incision tracing and flap design.

Micromechanical aspects of the blood clot during wound healing of oral mucosal tissues are defined under the symbiotic interaction of microsurgically controlled instrument handling and its impact on tissue mechanotransduction is elucidated and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. van Mil JF, Henman M. Terminology, the importance of defining. Int J Clin Pharm. 2016;38(3):709–13.

    PubMed  Google Scholar 

  2. Shanelec DA, Tibbets LS. A perspective on the future of periodontal microsurgery. Periodontol. 2000;1996(11):58–64.

    Google Scholar 

  3. Cromar GL, Xiong X, Chautard E, Ricard-Blum S, Parkinson J. Toward a systems level view of the ECM and related proteins: a framework for the systematic definition and analysis of biological systems. Proteins. 2012;80:1522–44.

    Article  PubMed  Google Scholar 

  4. Häkkinen L, Uitto VJ, Larjava H. Cell biology of gingival wound healing. Periodontol. 2000;2000(24):127–52.

    Google Scholar 

  5. Oakley C, Larjava H. Hemostasis, coagulation and complications. In: Larjava H, editor. Oral wound healing. Cell biology and clinical management. Oxford: Wiley-Blackwell; 2012. Chapter 2.

    Google Scholar 

  6. Mosesson MW. Fibrinogen and fibrin structure and functions. J Thromb Haemost. 2005;3(8):1894–904.

    Article  PubMed  Google Scholar 

  7. Weisel JW. Structure of fibrin: impact on clot stability. J Thromb Haemost. 2007;5(Suppl.1):116–24.

    Article  PubMed  Google Scholar 

  8. Guo S, DiPietro LA. Factors affecting wound healing. J Dent Res. 2010;89(3):219–29.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Robson MC, Steed DL, Franz MG. Wound healing: biologic features and approaches to maximize healing trajectories. Curr Probl Surg. 2001;38(2):71–141.

    Article  Google Scholar 

  10. Liew XP, Kubes P. The neutrophil’s role during health and disease. Physiol Rev. 2019;99:1223–48. Available from: https://journals.physiology.org/doi/full/10.1152/physrev.00012.2018

    Article  PubMed  Google Scholar 

  11. Dovi JV, Szpaderska AM, DiPietro LA. Neutrophil function in the healing wound: adding insult to injury? Thromb Haemost. 2004;92:275–80.

    Article  PubMed  Google Scholar 

  12. Mosser DM, Edwards JP. Exploring the full spectrum of macrophage activation. Nat Rev Immunol. 2008;8:958–69.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Woodley DT. Reepithelialization. In: Clark RA, editor. The molecular and cellular biology of wound repair. New York: Plenum Press; 1996. p. 339–54.

    Google Scholar 

  14. Oksala O, Salo T, Tammi R, Hakkinen L, Jalkanen M, Inki P, Larjava H. Expression of proteoglycans and hyaluronan during wound healing. J Histochem Cytochem. 1995;43:125–35.

    Article  PubMed  Google Scholar 

  15. Larjava H, Salo T, Haapasalmi K, Kramer RH, Heino J. Expression of integrins and basement membrane components by wound keratinocytes. J Clin Invest. 1993;92:1425–35.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Fischer D, Brown-Ludi M, Schulthess T, Chiquet-Ehrismann R. Concerted action of tenascin-C domains in cell adhesion, anti-adhesion and promotion of neurite outgrowth. J Cell Sci. 1997;10:1513–22.

    Article  Google Scholar 

  17. Ghaffari A, Kilani RT, Ghahary A. Keratinocyte-conditioned media regulate collagen expression in dermal fibroblasts. J Invest Dermatol. 2009;129:340–7.

    Article  PubMed  Google Scholar 

  18. Cutright DE. The proliferation of blood vessels in gingival wounds. J Periodontol. 1969;40:137–41.

    Article  PubMed  Google Scholar 

  19. Mörmann W, Ciancio SG. Blood supply of human gingiva following periodontal surgery. A fluorescein angiographic study. J Periodontol. 1977;11:681–92.

    Article  Google Scholar 

  20. Caffesse RG, Castelli WA, Nasjleti CE. Vascular response to modified Widman flap surgery in monkeys. J Periodontol. 1981;51:2–7.

    Google Scholar 

  21. Caffesse RG, Kon S, Castelli WA, Nasjleti| CE. Revascularization following the lateral sliding flap procedure. J Periodontol. 1984;55:352–8.

    Article  PubMed  Google Scholar 

  22. Kon S, Caffesse RG, Castelli WA, Nasjleti CE. Revascularization following a combined gingival flap-split thickness flap procedure in monkeys. J Periodontol. 1984;55:345–51.

    Article  PubMed  Google Scholar 

  23. Li WW, Talcott KE, Zhai AW, Kruger EA, Li VW. The role of therapeutic angiogenesis in tissue repair and regeneration. Adv Skin Wound Care. 2005;18:491–500.

    Article  PubMed  Google Scholar 

  24. Guerra A, Belinha J, Natal JR. Modelling skin wound healing angiogenesis: a review. J Theor Biol. 2018;459:1–17.

    Article  PubMed  Google Scholar 

  25. Lange-Asschenfeldt B, Velasco P, Streit M, Hawighorst T, Detmar M, Pike SE, Tosato G. The angiogenesis inhibitor vasostatin does not impair wound healing at tumor-inhibiting doses. J Invest Dermatol. 2001;117:1036–41.

    Article  PubMed  Google Scholar 

  26. Roman CD, Choy H, Nanney L, Riordan C, Parman K, Johnson D, Beauchamp RD. Vascular endothelial growth factor-mediated angiogenesis inhibition and postoperative wound healing in rats. J Surg Res. 2002;105:43–7.

    Article  PubMed  Google Scholar 

  27. Streit M, Velasco P, Riccardi L, Spencer L, Brown LF, Janes L, Lange-Asschenfeldt B, Yano K, Hawighorst T, Iruela-Arispe L, Detmar M. Thrombospondin-1 suppresses wound healing and granulation tissue formation in the skin of transgenic mice. EMBO J. 2000;19:3272–82.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Rossiter H, Barresi C, Pammer J, Rendl M, Haigh J, Wagner EF, Tschachler E. Loss of vascular endothelial growth factor a activity in murine epidermal keratinocytes delays wound healing and inhibits tumor formation. Cancer Res. 2004;64:3508–16.

    Article  PubMed  Google Scholar 

  29. Bluff JE, O’Ceallaigh S, O’Kane S, Ferguson MW. The microcirculation in acute murine cutaneous incisional wounds shows a spatial and temporal variation in the functionality of vessels. Wound Repair Regen. 2006;14:434–42.

    Article  PubMed  Google Scholar 

  30. Koh TJ, DiPietro LA. Inflammation and wound healing: the role of the macrophage. Expert Rev Mol Med. 2011;13:e23.

    Article  PubMed  PubMed Central  Google Scholar 

  31. DiPietro LA. Angiogenesis and wound repair: when enough is enough. J Leukoc Biol. 2016;100(5):979–84.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Szpaderska AM, Zuckerman JD, DiPietro LA. Differential injury responses in oral mucosal and cutaneous wounds. J Dent Res. 2003;82(8):621–6.

    Article  PubMed  Google Scholar 

  33. Szpaderska AM, Walsh CG, Steinberg MJ, DiPietro LA. Distinct patterns of angiogenesis in oral and skin wounds. J Dent Res. 2005;84(4):309–14.

    Article  PubMed  Google Scholar 

  34. Canady JW, Johnson GK, Squier CA. Measurement of blood flow in the skin and oral mucosa of the rhesus monkey (Macaca mulatta) using laser Doppler flowmetry. Comp Biochem Physiol. 1993;106(1):61–3.

    Article  Google Scholar 

  35. Hering TM, Marchant RE, Anderson JM. Type V collagen during granulation tissue development. Exp Mol Pathol. 1983;39(2):219–29.

    Article  PubMed  Google Scholar 

  36. Laurens N, Koolwijk P, De Maat MP. Fibrin structure and wound healing. J Thromb Haemost. 2006;4:932–9.

    Article  PubMed  Google Scholar 

  37. Häkkinen L, Larjava H, Koivisto L. Granulation tissue formation and remodeling. In: Larjava H, editor. Oral wound healing. Cell biology and clinical management. Oxford: Wiley-Blackwell; 2012. Chapter 6.

    Google Scholar 

  38. Gurtner GC, Werner S, Barrandon Y, Longaker MT. Wound repair and regeneration. Nature. 2008;453(15):314–21.

    Article  PubMed  Google Scholar 

  39. Tomasek JJ, Gabbiani G, Hinz B, Chaponnier C, Brown RA. Myofibroblast and mechanoregulation of connective tissue remodelling. Nat Rev. 2002;3:349–69.

    Article  Google Scholar 

  40. Hinz B, Gabbiani G. Fibrosis: recent advances in myofibroblast biology and new therapeutic perspectives. Biol Rep. 2010;11:78. https://doi.org/10.3410/B2-78.

    Article  Google Scholar 

  41. Wong VW, Akaishi S, Longaker MT, Gurtner GC. Pushing back: wound mechanotransduction in repair and regeneration. J Invest Dermatol. 2011;131:2186–96.

    Article  PubMed  Google Scholar 

  42. Di Gianfilippo R, Wang I, Steigmann L, Velasquez D, Wang HL, Chan HL. Efficacy of microsurgery and comparison to macrosurgery for gingival recession treatment: a systematic review with meta-analysis. Clin Oral Investig. 2021;25:4269–80.

    Article  PubMed  Google Scholar 

  43. Pope C. Resisting evidence: the study of evidence-based medicine as a contemporary social movement. Health. 2003;7:267–82.

    Article  Google Scholar 

  44. Popelut A, Valet F, Fromentin O, Thomas A, Bouchard P. Relationship between sponsorship and failure rate of dental implants: a systematic approach. PLoS One. 2010;5:e10274. https://doi.org/10.1371/journal.pone.0010274.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Greenhalgh T, Howick J, Maskrey N. Evidence based medicine: a movement in crisis? BMJ. 2014;348:g3725. https://doi.org/10.1136/bmj.g3725.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Probst P, Knebel P, Grummich K, Tenckhoff S, Ulrich A, Büchler MW, Diener MK. Industry bias in randomized controlled trials in general and abdominal surgery. An empirical study. Ann Surg. 2016;264:87–92.

    Article  PubMed  Google Scholar 

  47. van der Sanden WJ, Mettes DG, Plasschaert AJ, Grol RP, Mulder J, Verdonschot EH. Effectiveness of clinical practice guideline implementation on lower third molar management in improving clinical decision-making: a randomized controlled trial. Eur J Oral Sci. 2005;113:349–54.

    Article  PubMed  Google Scholar 

  48. Nguyen N, Elliott JO, Watson WD, Dominguez E. Simulation improves nontechnical skills performance of residents during the perioperative and intraoperative phases of surgery. J Surg Educ. 2015;72(5):957–63.

    Article  PubMed  Google Scholar 

  49. Saposnik G, Redelmeier D, Ruff CC, Tobler PN. Cognitive biases associated with medical decisions: a systematic review. BMC Med Inform Decis Mak. 2016;16:138. Available from: https://bmcmedinformdecismak.biomedcentral.com/articles/10.1186/s12911-016-0377-1

    Article  PubMed  PubMed Central  Google Scholar 

  50. Del Fabbro M, Taschieri S, Lodi G, Banfi G, Weinstein RL. Magnification devices for endodontic therapy. Cochrane Database Syst Rev. 2015;12:CD005969. Available from: https://www.cochranelibrary.com/cdsr/doi/10.1002/14651858.CD005969.pub3/full.

    Google Scholar 

  51. Karring T, Lindhe J. Concepts in periodontal tissue regeneration. In: Lindhe J, Lang NP, editors. Clinical periodontology and implant dentistry. 6th ed. Oxford: John Wiley & Sons, Ltd.; 2015. p. 521–55.

    Google Scholar 

  52. Gottlow J, Nyman S, Karring T, Lindhe J. New attachment formation as the result of controlled tissue regeneration. J Clin Periodontol. 1984;11:494–503.

    Article  PubMed  Google Scholar 

  53. Nyman S, Lindhe J, Karring T, Rylander H. New attachment following surgical treatment of human periodontal disease. J Clin Periodontol. 1982;9:290–6.

    Article  PubMed  Google Scholar 

  54. Cortellini P, Tonetti MS. Regenerative periodontal therapy. In: Lang NP, Lindhe J, editors. Clinical periodontology and implant dentistry. 6th ed. Oxford: John Wiley & Sons, Ltd.; 2015. p. 901–68.

    Google Scholar 

  55. Mayfield L, Söderholm G, Hallström H, Kullendorff B, Edwardsson S, Bratthall G, Brägger U, Attström R. Guided tissue regeneration for the treatment of intraosseous defects using a bioabsorbable membrane. A controlled clinical study. J Clin Periodontol. 1998;25(7):585–95.

    Article  PubMed  Google Scholar 

  56. Harrel S. A minimally invasive surgical approach for periodontal regeneration: surgical technique and observation. J Periodontol. 1999;70:1547–57.

    Article  PubMed  Google Scholar 

  57. Harrel S, Nunn ME, Belling CM. Long-term results of a minimally invasive surgical approach for bone grafting. J Periodontol. 1999;70:1558–63.

    Article  PubMed  Google Scholar 

  58. Cortellini P, Pini-Prato GP, Tonetti M. The modified papilla preservation technique. A new surgical approach for interproximal regenerative procedures. J Periodontol. 1995;66:261–6.

    Article  PubMed  Google Scholar 

  59. Cortellini P, Pini-Prato GP, Tonetti MS. The simplified papilla preservation flap. A novel surgical approach for the management of soft tissues in regenerative procedures. Int J Periodontics Restorative Dent. 1999;19:589–99.

    PubMed  Google Scholar 

  60. Trombelli L, Farina R, Franceschetti G, Calura G. Single-flap approach with buccal access in periodontal reconstructive procedures. J Periodontol. 2009;80(2):353–60.

    Article  PubMed  Google Scholar 

  61. Zucchelli G, De Sanctis M. The papilla amplification flap: a surgical approach to narrow interproximal spaces in regenerative procedures. Int J Periodontics Restorative Dent. 2005;25(5):483–93.

    PubMed  Google Scholar 

  62. Needleman I, Tucker R, Giedrys-Leeper E, Worthington H. Guided tissue regeneration for periodontal intrabony defects – a Cochrane systematic review. Periodontol. 2000;2005(37):106–23.

    Google Scholar 

  63. Cortellini P, Tonetti MS. Focus on intrabony defects: guided tissue regeneration. Periodontol. 2000;2000(22):104–13.

    Article  Google Scholar 

  64. Craig RG, Kallur SP, Inoue M, Rosenberg PA, LeGeros RZ. Effect of enamel matrix proteins on the periodontal connective tissue-material interface after wound healing. J Biomed Mater Res A. 2004;69(1):180–7.

    Article  PubMed  Google Scholar 

  65. Esposito M, Coulthard P, Worthington HV. Enamel matrix derivative (Emdogain®) for periodontal tissue regeneration in intrabony defects. Cochrane Database Syst Rev. 2003;2:CD003875. https://doi.org/10.1002/14651858.CD003875.pub2/full.

    Article  Google Scholar 

  66. Cortellini P, Tonetti MS. A minimally invasive surgical technique (MIST) with enamel matrix derivate in the regenerative treatment of intrabony defects: a novel approach to limit morbidity. J Clin Periodontol. 2007;34:87–93.

    Article  PubMed  Google Scholar 

  67. Cortellini P, Tonetti MS. Improved wound stability with a modified minimally invasive surgical technique in the regenerative treatment of isolated interdental intrabony defects. J Clin Periodontol. 2009;36:157–63.

    Article  PubMed  Google Scholar 

  68. Cortellini P, Tonetti MS. Clinical and radiographic outcomes of the modified minimally invasive surgical technique with and without regenerative materials: a randomized-controlled trial in intra-bony defects. J Clin Periodontol. 2011;38:365–73.

    Article  PubMed  Google Scholar 

  69. Azuma H, Kono T, Morita H, Tsumori N, Miki H, Shiomi K, Umeda M. Single flap periodontal surgery induces early fibrous tissue generation by wound stabilization. J Hard Tissue Biol. 2017;26(2):119–26.

    Article  Google Scholar 

  70. Burkhardt R, Hämmerle CHF, Lang NP. How do visual-spatial and psychomotor abilities influence clinical performance in periodontal plastic surgery? J Clin Periodontol. 2018;46(1):1–14.

    Google Scholar 

  71. Evian CI, Corn H, Rosenberg ES. Retained interdental papilla procedure for maintaining anterior esthetics. Compend Contin Educ Dent. 1985;58:58–64.

    Google Scholar 

  72. Takei HH, Han TJ, Carranza FA, Kenney EB, Lekovic V. Flap technique for periodontal bone implants. Papilla preservation technique. J Periodontol. 1985;56(4):204–10.

    Article  PubMed  Google Scholar 

  73. Cortellini P, Tonetti MS. Microsurgical approach to periodontal regeneration. Initial evaluation in a case cohort. J Periodontal. 2001;72(4):559–69.

    Article  Google Scholar 

  74. Burkhardt R, Lang NP. Coverage of localized gingival recessions: comparison of micro- and macrosurgical techniques. J Clin Periodontol. 2005;32:287–93.

    Article  PubMed  Google Scholar 

  75. Ioannidis A, Arvanitidis K, Filidou E, Valatas V, Stavrou G, Michalopoulos A, Kolios G, Kotzampassi K. The length of surgical skin incision in postoperative inflammatory reaction. JSLS. 2018;22(4):e2018.00045.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Pini-Prato G, Pagliaro U, Baldi C, Nieri M, Saletta D, Cairo F, Cortellini P. Coronally advanced flap procedures. Flap with tension versus flap without tension: a randomized controlled clinical study. J Periodontol. 2000;71:188–201.

    Article  PubMed  Google Scholar 

  77. Burkhardt R, Lang NP. Role of flap tension in primary wound closure of mucoperiosteal flaps: a prospective cohort study. Clin Oral Impl Res. 2010;21:50–4.

    Article  Google Scholar 

  78. De Stavola L, Tunkel J. The role played by a suspended external-internal suture in reducing marginal flap tension after bone reconstruction: a clinical prospective cohort study in the maxilla. J Oral Maxillofac Implants. 2014;29:921–6.

    Article  Google Scholar 

  79. Morin G, Rand M, Burgess LP, Voussoughi J, Graeber GM. Wound healing: relationship of wound tension to tensile strength in rats. Laryngoscope. 1989;99:783–8.

    Article  PubMed  Google Scholar 

  80. Pickett B, Burgess LP, Livermore GH, Tzikas TL, Vossoughi J. Wound healing: tensile strength versus healing time for wounds closed under tension. Arch Otolaryngol Head Neck Surg. 1996;122:565–8.

    Article  PubMed  Google Scholar 

  81. Hinz B. Matrix mechanics and regulation of the fibroblast phenotype. Periodontol. 2000;2013(63):14–28.

    Google Scholar 

  82. Blaber E, Sato K, Almeida EA. Stem cell health and tissue regeneration in microgravity. Stem Cells Dev. 2014;23(Suppl 1):73–8.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Hinz B, Phan SH, Thannickal VJ, Prunotto M, Desmoulière A, Varga J, De Wever O, Mareel M, Gabbiani G. Recent developments in myofibroblast biology. Am J Clin Pathol. 2012;180(4):1340–55.

    Article  Google Scholar 

  84. Chu EK, Cheng J, Foley JS, Mecham BH, Owen CA, Haley KJ, Mariani TJ, Kohane IS, Tschumperlin DJ, Drazen JM. Induction of the plasminogen activator system by mechanical stimulation of human bronchial epithelial cells. Am J Respir Cell Mol Biol. 2006;35(6):628–38.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Gemmiti CV, Guldberg RE. Shear stress magnitude and duration modulates matrix composition and tensile mechanical properties in engineered cartilaginous tissue. Biotechnol Bioeng. 2009;104(4):809–20.

    PubMed  PubMed Central  Google Scholar 

  86. Gulino-Debrac D. Mechanotransduction at the basis of endothelial barrier function. Tissue Barriers. 2013;1(2):e24180.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Duscher D, Maan ZN, Wong VW, Rennert RC, Januszyk M, Rodrigues M, Hu M, Whitmore AJ, Whittam AJ, Longaker MT, Gurtner GC. Mechanotransduction and fibrosis. J Biomech. 2005;27(9):1997–2005.

    Article  Google Scholar 

  88. Ingber DE. Tensegrity: the architectural basis of cellular mechanotransduction. Annu Rev Physiol. 1997;59:575–99.

    Article  PubMed  Google Scholar 

  89. Ingber DE, Tensegrity II. How structural networks influence cellular information processing networks. J Cell Sci. 2003;116:1397–408.

    Article  PubMed  Google Scholar 

  90. Wong VW, Longaker MT, Gurtner GC. Soft tissue mechanotransduction in wound healing and fibrosis. Semin Cell Dev Biol. 2012;23:981–6.

    Article  PubMed  Google Scholar 

  91. Hynes RO. Extracellular matrix: not just pretty fibrils. Science. 2009;326:1216–9.

    Article  PubMed  PubMed Central  Google Scholar 

  92. Wang N, Tytell JD, Ingber DE. Mechanotransduction at a distance: mechanically coupling the extracellular matrix with the nucleus. Nat Rev Mol Cell Biol. 2009;10:75–82.

    Article  PubMed  Google Scholar 

  93. Mammoto T, Mammoto A, Ingber DA. Mechanobiology and developmental control. Annu Rev Cell Dev Biol. 2013;29:27–61.

    Article  PubMed  Google Scholar 

  94. Hahn C, Schwartz MA. Mechanotransduction in vascular physiology and atherogenesis. Nat Rev Mol Cell Biol. 2009;10:53–62.

    Article  PubMed  PubMed Central  Google Scholar 

  95. Zöllner AM, Buganza A, Kuhlb T, Kuhlb E. On the biomechanics and mechanobiology of growing skin. J Theor Biol. 2012;297:166–75.

    Article  PubMed  PubMed Central  Google Scholar 

  96. Dieffenbach PB, Maracle M, Tschumperlin DJ, Fredenburgh LE. Mechanobiological feedback in pulmonary vascular disease. Front Physiol. 2018;9:951. https://doi.org/10.3389/fphys.2018.00951/full.

    Article  PubMed  PubMed Central  Google Scholar 

  97. Van Beurden HE, Snoek PA, Von den Hoff JW, Torensma R, Maltha JC, Kuijpers-Jagtman AM. In vitro migration and adhesion of fibroblasts from different phases of palatal wound healing. Wound Rep Reg. 2006;14:66–71.

    Article  Google Scholar 

  98. Chukkapalli SS, Lele TP. Periodontal cell mechanotransduction. Open Biol. 2018;8:180053. https://doi.org/10.1098/rsob.180053.

    Article  PubMed  PubMed Central  Google Scholar 

  99. Weisel JW. Stressed fibrin lysis. J Thromb Haemost. 2011;9:977–8.

    Article  PubMed  PubMed Central  Google Scholar 

  100. Liu W, Carlisle CR, Sparks EA, Guthold M. The mechanical properties of single fibrin fibers. The mechanical properties of single fibrin fibers. J Thromb Haemost. 2010;8:1030–6.

    PubMed  PubMed Central  Google Scholar 

  101. Burkhardt R, Ruiz Magaz V, Hämmerle CH, Lang NP. Interposition of a connective tissue graft or a collagen matrix to enhance wound stability – an experimental study in dogs. J Clin Periodontol. 2016;43:366–73.

    Article  PubMed  Google Scholar 

  102. Varjú I, Sótonyi P, Machovich R, Szabó L, Tenekedjiev K, Silva MM, Longstaff C, Kolev K. Hindered dissolution of fibrin formed under mechanical stress. J Thromb Haemost. 2011;9:979–86.

    Article  PubMed  PubMed Central  Google Scholar 

  103. Darby IA, Laverdet B, Bonté DA. Fibroblasts and myofibroblasts in wound healing. Clin Cosmet Investig Dermatol. 2014;7:301–11.

    PubMed  PubMed Central  Google Scholar 

  104. Nehls V, Herrmann R. The configuration of fibrin clots determines capillary morphogenesis and endothelial cell migration. Microvasc Res. 1996;51:347–64.

    Article  PubMed  Google Scholar 

  105. Knapik A, Hegland N, Calcagni M, Althaus M, Vollmar B, Giovanoli P, Lindenblatt N. Metalloproteinases facilitate connection of wound bed vessels to pre-existing skin graft vasculature. Microvasc Res. 2012;84:16–23.

    Article  PubMed  Google Scholar 

  106. Burkhardt R, Preiss A, Joss A, Lang NP. Influence of suture tension to the tearing characteristics of the soft tissues: an in vitro experiment. Clin Oral Impl Res. 2008;19:314–9.

    Article  Google Scholar 

  107. Gieni RS, Hendzel MG. Mechanotransduction from the ECM to the genome: are the pieces now in place? J Cell Biochem. 2008;104:1964–87.

    Article  PubMed  Google Scholar 

  108. Sorg H, Tilkorn DJ, Hager S, Hauser J, Mirastschijski U. Skin wound healing: an update on the current knowledge and concepts. Eur Surg Res. 2017;58(1):81–94.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Burkhardt, R. (2022). The Impact of a Minimally Invasive Approach on Oral Wound Healing. In: Chan, HL.(., Velasquez-Plata, D. (eds) Microsurgery in Periodontal and Implant Dentistry. Springer, Cham. https://doi.org/10.1007/978-3-030-96874-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-96874-8_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-96873-1

  • Online ISBN: 978-3-030-96874-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics