Skip to main content

Microsurgery in Guided Bone Regeneration

  • Chapter
  • First Online:
Microsurgery in Periodontal and Implant Dentistry
  • 697 Accesses

Abstract

Guided bone regeneration (GBR) is the process of replacing lost tissues with elements to restore normal function and structure for ideal three-dimensional placement of dental implants. GBR is based on guided tissue regeneration and has common mechanical and biological principles; their similarities are obvious throughout the evolution of bone regeneration concepts. There are four fundamental biological principles for successful GBR: primary wound closure, adequate blood supply, clot stability, and space maintenance.

Microsurgery was introduced in Periodontology in 1992 for the improvement of surgical techniques. It was made possible by the advancements in visual acuity obtained through the microscope. Microsurgery helps develop motor skills by improving surgical capacity, reduces tissue trauma, and contributes to the primary closure of the wound.

The proposed use of the microscope in GBR can aid precision in surgical execution. It has been shown that microsurgery contributes to improved healing and treatment outcomes in other areas of Periodontology.

This chapter provides a detailed description of GBR techniques using a surgical microscope (MO) along with information on the elements essential for the application of this technology. The principles of magnification and coaxial light and fundamentals of microsurgery are used for the execution of incisions, release of flaps, preparation of the surgical bed, handling of biomaterials, and membrane fixation, complementing the techniques for flap closure and soft tissue management in regenerative therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wang HL, Boyapati L. "PASS" principles for predictable bone regeneration. Implant Dent. 2006;15(1):8–17. https://doi.org/10.1097/01.id.0000204762.39826.0f.

    Article  PubMed  Google Scholar 

  2. Nyman S, Karring T, Lindhe J, Plantén S. Healing following implantation of periodontitis-affected roots into gingival connective tissue. J Clin Periodontol. 1980;7(5):394–401. https://doi.org/10.1111/j.1600-051x.1980.tb02012.x.

    Article  PubMed  Google Scholar 

  3. Gottlow J, Nyman S, Lindhe J, Karring T, Wennstrom J. New attachment formation in the human periodontium by guided tissue regeneration. Case reports. J Clin Periodontol. 1986;13(6):604–16. https://doi.org/10.1111/j.1600-051X.1986.tb00854.X.

    Article  PubMed  Google Scholar 

  4. Schenk RK, Buser D, Hardwick WR, Dahlin C. Healing pattern of bone regeneration in membrane-protected defects: a histologic study in the canine mandible. Int J Oral Maxillofac Implants. 1994;9(1):13–29. PMID: 8150509

    PubMed  Google Scholar 

  5. Pietrokovski J, Massler M. Ridge remodeling after tooth extraction in rats. J Dent Res. 1967;46(1):222–31.

    Article  Google Scholar 

  6. Amler MH, Johnson PL, Salman I. Histological and histochemical investigation of human alveolar socket healing in undisturbed extraction wounds. J Am Dent Assoc. 1960;61:46–8. https://doi.org/10.14219/jada.archive.1960.0152.

    Article  Google Scholar 

  7. Boyne PJ. Osseous repair of the postextraction alveolus in man. Oral Surg Oral Med Oral Pathol. 1966;21(6):805–13. https://doi.org/10.1016/0030-4220(66)90104-6.

    Article  PubMed  Google Scholar 

  8. Seibert JS. Reconstruction of deformed, partially edentulous ridges, using full thickness onlay grafts. Part I. technique and wound healing. Compend Contin Educ Dent. 1983;4(5):437–53. PMID: 6578906

    PubMed  Google Scholar 

  9. Huebsch RF, Hansen LS. A histopathologic study of extraction wounds in dogs. Oral Surg Oral Med Oral Pathol. 1969;28:187–96. https://doi.org/10.1016/0030-4220(69)90286-2.

    Article  PubMed  Google Scholar 

  10. Araújo M, Lindhe J. Dimensional ridge alterations following tooth extraction. An experimental study in dog. J Clin Periodontol. 2005;32(2):212–8. https://doi.org/10.1111/j.1600-051x.2005.00642.x.

    Article  PubMed  Google Scholar 

  11. Schropp L, Wenzel A, Kostopoulos L, Karring T. Bone healing and soft tissue contour changes following single-tooth extraction: a clinical and radiographic 12-month prospective study. Int J Periodontics Restorative Dent. 2003;23(4):313–23. PMID: 12956475

    PubMed  Google Scholar 

  12. Van der Weijden F, Dell'Acqua F, Slot DE. Alveolar bone dimensional changes of post-extraction sockets in humans: a systematic review. J Clin Periodontol. 2009;36(12):1048–58. https://doi.org/10.1111/j.1600-051X.2009.01482.x.

    Article  PubMed  Google Scholar 

  13. Iasella JM, Greenwell H, Miller RL, Hill M, Drisko C, Bohra AA, et al. Ridge preservation with freeze-dried bone allograft and a collagen membrane compared to extraction alone for implant site development: a clinical and histologic study in humans. J Periodontol. 2003;74(7):990–9. https://doi.org/10.1902/jop.2003.74.7.990.

    Article  PubMed  Google Scholar 

  14. Nevins M, Mellonig JT, Clem DS 3rd, Reiser GM, Buser DA. Implants in regenerated bone: long-term survival. Int J Periodontics Restorative Dent. 1998;18(1):34–45. PMID: 9558555

    PubMed  Google Scholar 

  15. Simion M, Jovanovic SA, Tinti C, Benfenati SP. Long-term evaluation of osseointegrated implants inserted at the time or after vertical ridge augmentation. A retrospective study on 123 implants with 1-5 year follow-up. Clin Oral Implants Res. 2001;12(1):35–45. https://doi.org/10.1034/j.1600-0501.2001.012001035.x. PMID: 11168269

    Article  PubMed  Google Scholar 

  16. Shanelec DA, Tibbetts LS. Orlando, FL: 78th American Academy of Periodontology Annual Meeting; 1992. Nov 19, Periodontal microsurgery, continuing education course.

    Google Scholar 

  17. Burkhardt R, Hürzeler MB. Utilization of the surgical microscope for advanced plastic periodontal surgery. Pract Periodontics Aesthet Dent. 2000;12(2):171–80; quiz 182. PMID: 11404959

    PubMed  Google Scholar 

  18. Cortellini P, Tonetti MS. Microsurgical approach to periodontal regeneration. Initial evaluation in a case cohort. J Periodontol. 2001;72(4):559–69. https://doi.org/10.1902/jop.2001.72.4.559.

    Article  PubMed  Google Scholar 

  19. Cortellini P, Tonetti MS. A minimally invasive surgical technique with an enamel matrix derivative in the regenerative treatment of intra-bony defects: a novel approach to limit morbidity. J Clin Periodontol. 2007;34(1):87–93. https://doi.org/10.1111/j.1600-051X.2006.01020.x.

    Article  PubMed  Google Scholar 

  20. Cortellini P. Minimally invasive surgical techniques in periodontal regeneration. J Evid Based Dent Pract. 2012;12(3):89–100. https://doi.org/10.1016/S1532-3382(12)70021-0.

    Article  PubMed  Google Scholar 

  21. Nordland WP, Sandhu HS. Microsurgical technique for augmentation of the interdental papilla: three case reports. Int J Periodontics Restorative Dent. 2008;28(6):543–9. PMID: 19146049

    PubMed  Google Scholar 

  22. Burkhardt R, Lang NP. Coverage of localized gingival recessions: comparison of micro- and macrosurgical techniques. J Clin Periodontol. 2005;32(3):287–93. https://doi.org/10.1111/j.1600-051X.2005.00660.x.

    Article  PubMed  Google Scholar 

  23. Tavelli L, Borgonovo AE, Saleh MH, Ravidà A, Chan HL, Wang HL. Classification of sinus membrane perforations occurring during Transcrestal sinus floor elevation and related treatment. Int J Periodontics Restorative Dent. 2020;40(1):111–8. https://doi.org/10.11607/prd.3602.

    Article  PubMed  Google Scholar 

  24. Di Gianfilippo R, Wang IC, Steigmann L, Velasquez D, Wang HL, Chan HL. Efficacy of microsurgery and comparison to macrosurgery for gingival recession treatment: a systematic review with meta-analysis. Clin Oral Investig. 2021;25(7):4269–80. https://doi.org/10.1007/s00784-021-03954-0. Epub ahead of print

    Article  PubMed  Google Scholar 

  25. Spark DS, Wagels M, Taylor GI. Bone reconstruction: a history of vascularized bone transfer. Microsurgery. 2018;38(1):7–13. https://doi.org/10.1002/micr.30260.

    Article  Google Scholar 

  26. Jacobson JH, Suarez EL. Microvascular surgery. Dis Chest. 1962;41:220–4. https://doi.org/10.1378/chest.41.2.220.

    Article  PubMed  Google Scholar 

  27. Uluç K, Kujoth GC, Başkaya MK. Operating microscopes: past, present, and future. Neurosurg Focus. 2009;27(3):E4. https://doi.org/10.3171/2009.6.FOCUS09120.

    Article  PubMed  Google Scholar 

  28. Tibbetts LS, Shanelec DA. Principles and practice of periodontal microsurgery. Int J Microdent. 2009;1:13–24.

    Google Scholar 

  29. de Campos GV, Bittencourt S, Sallum AW, Nociti Júnior FH, Sallum EA, Casati MZ. Achieving primary closure and enhancing aesthetics with periodontal microsurgery. Pract Proced Aesthet Dent. 2006;18(7):449–54.

    PubMed  Google Scholar 

  30. Allen EP, Gainza CS, Farthing GG, Newbold DA. Improved technique for localized ridge augmentation. A report of 21 cases. J Periodontol. 1985;56(4):195–9. https://doi.org/10.1902/jop.1985.56.4.195.

    Article  PubMed  Google Scholar 

  31. Kao D, Fiorellini JP. Clasificación de la relación de la cresta alveolar interarcada. Rev Int Odontol Restaur Period. 2010;14(5):522–9.

    Google Scholar 

  32. Wang HL, Al-Shammari K. HVC ridge deficiency classification: a therapeutically oriented classification. Int J Periodontics Restorative Dent. 2002;22(4):335–43.

    PubMed  Google Scholar 

  33. Bosshardt D, Schenk RK. Bone regeneration: biologic basis. In: 20 Years of Guided Bone regeneration in Implant Dentistry. 2nd ed. Batavia, Illinois: Quintessence; 2009. p. 15–45.

    Google Scholar 

  34. Davies J, Hosseini M. Histodynamics of endosseous wound healing. In: Davies JE, editor. Bone engineering. Atlanta, GA: Em Squared Inc.; 2000. p. 1–14.

    Google Scholar 

  35. Fernández-Tresguerres-Hernández-Gil I, MA AG, del Canto PM, Blanco JL. Physiological bases of bone regeneration I. Histology and physiology of bone tissue. Med Oral Patol Oral Cir Bucal. 2006;11:E47–51. © Medicina Oral S. L. C.I.F. B 96689336-ISSN 1698–6946

    PubMed  Google Scholar 

  36. McDonal MM, Khoo WH, Ng PY, Xiao Y, Zamerli J, Thatcher P, Kyaw W, Pathmanandavel K, Grootveld AK, Moran I, Butt D, Nguyen A, Corr A, Warren S, Biro M, Butterfield N, Guilfoyle SE, Komla-Ebri D, Dack MRG, Dewhurst HF, Logan JG, Li Y, Mohanty ST, Byrne N, Terry RL, Simic MK, Chai R, Quinn JMW, Youlten S, Petttitt JA, Abi-Hanna D, Jain R, Weninger W, Lundberg M, Sun S, Ebetino FH, Timpson P, Lee WM, Baldock PA, Rogers MJ, Brink R, Williams GR, Bassett JHD, Kemp JP, Pavlos NJ, Croucher PI, Phan TG, Less S. Footnotes S. Osteoclasts recycle via osteomorphs during RANKL-stimulated bone resorption. Cell. 2021;184:1330–1347.E13. https://doi.org/10.1016/j.cell.2021.02.002.

    Article  Google Scholar 

  37. Geneser F, Brüel A, et al. Geneser Histología. Edición: 4ª Ed. Singapore: Panamericana; 2015.

    Google Scholar 

  38. Schmid J, Wallkamm B, Hämmerle CH, Gogolewski S, Lang NP. The significance of angiogenesis in guided bone regeneration. A case report of a rabbit experiment. Clin Oral Implants Res. 1997;8(3):244–8. https://doi.org/10.1034/j.1600-0501.1997.080311.x.

    Article  PubMed  Google Scholar 

  39. Urban IA, Monje A, Wang HL, Lozada J, Gerber G, Baksa G. Mandibular regional anatomical landmarks and clinical implications for ridge augmentation. Int J Periodontics Restorative Dent. 2017;37(3):347–53. https://doi.org/10.11607/prd.3199.

    Article  PubMed  Google Scholar 

  40. Moore KL, Dalley AF II, Agur AMR, Gutiérrez A, Vasallo L, Fontán Fontán F, et al. Cabeza, Wolters Kluwer Anatomía con orientación clínica. 8a edición; 2018. p. 932–52.

    Google Scholar 

  41. Urban I. Principles of vertical and horizontal ridge augmentation in the posterior mandible. In: Vertical and horizontal ridge augmentation new perspectives. Batavia, IL: Quintessence Publishing; 2017. p. 39–60.

    Google Scholar 

  42. Elian N, Ehrlich B, Jalbout ZN, Classi AJ, Cho S-C, Kamer AR, et al. Advanced Concepts in Implant Dentistry: Creating the “Aesthetic Site Foundation.” Dental Clinics of North America. Dent Clin N Am. 2007;51(2):547–63, xi-xii. https://doi.org/10.1016/j.cden.2007.03.001.

    Article  PubMed  Google Scholar 

  43. Joly JC, Carvalho PFM, Silva RC. Perio-Implantodontia Estética. Quintessence Editora: São Paulo; 2015.

    Google Scholar 

  44. Ronda M, Stacchi C. Management of a coronally advanced lingual flap in regenerative osseous surgery: a case series introducing a novel technique. Int J Periodontics Restorative Dent. 2011;31(5):505–13.

    PubMed  Google Scholar 

  45. Zuhr O, Hurzeler M. Cirugia Plastica y Estética, Periodontal e Implantológica . Un enfoque microquiruúgico. Quintessence, São Paulo; 2011.

    Google Scholar 

  46. Tinti C, Parma-Benfenati S. Vertical ridge augmentation: surgical protocol and retrospective evaluation of 48 consecutively inserted implants. Int J Periodontics Restorative Dent. 1998;18(5):434–43. https://doi.org/10.11607/prd.00.0287.

    Article  PubMed  Google Scholar 

  47. Urban I, Traxler H, Romero-Bustillos M, Farkasdi S, Bartee B, Baksa G, et al. Effectiveness of two different lingual flap advancing techniques for vertical bone augmentation in the posterior mandible: a comparative, Split-mouth cadaver study. Int J Periodontics Restorative Dent. 2018;38(1):35–40. https://doi.org/10.11607/prd.3227.

    Article  PubMed  Google Scholar 

  48. Greenstein G, Greenstein B, Cavallaro J, Elian N, Tarnow D. Flap advancement: practical techniques to attain tension-free primary closure. J Periodontol. 2009;80(1):4–15. https://doi.org/10.1902/jop.2009.080344.

    Article  PubMed  Google Scholar 

  49. Sculean A, Nikolodakis D, Schwarz F. Regeneration of periodontal tissues: combinations of barrier membranes and grafting materials - biological foundation and preclinical evidence: a systematic review. J Clin Periodontol. 2008;35(8 Suppl):106–16. https://doi.org/10.1111/j.160051X.2008.01263.x.

    Article  PubMed  Google Scholar 

  50. Urban IA, Monje A, Lozada J, Wang HL. Principles for vertical ridge augmentation in the atrophic posterior mandible: a technical review. Int J Periodontics Restorative Dent. 2017;37(5):639–45. https://doi.org/10.11607/prd.3200.

    Article  PubMed  Google Scholar 

  51. Galindo-Moreno P, Hernndez-Corts P, Aneiros-Fernndez J, Camara M, Mesa F, Wallace S, et al. Morphological evidences of bio-Oss colonization by CD44-positive cells. Clin Oral Implants Res. 2014;25(3):366–71. https://doi.org/10.1111/clr.12112. Epub 2013 Jan 28

    Article  PubMed  Google Scholar 

  52. Simion M, Fontana F, Rasperini G, Maiorana C. Vertical ridge augmentation by expanded-polytetrafluoroethylene membrane and a combination of intraoral autogenous bone graft and deproteinized anorganic bovine bone (bio Oss). Clin Oral Implants Res. 2007;18(5):620–9. https://doi.org/10.1111/j.1600-0501.2007.01389.x.

    Article  PubMed  Google Scholar 

  53. Urban IA, Nagursky H, Lozada JL, Nagy K. Horizontal ridge augmentation with a collagen membrane and a combination of particulated autogenous bone and anorganic bovine bone-derived mineral: a prospective case series in 25 patients. Int J Periodontics Restorative Dent. 2013;33(3):299–307. https://doi.org/10.11607/prd.1407.

    Article  PubMed  Google Scholar 

  54. Urban IA, Nagursky H, Lozada JL. Horizontal ridge augmentation with a Resorbable membrane and Particulated autogenous bone with or without Anorganic bovine bone-derived mineral: a prospective case series in 22 patients. Int J Oral Maxillofac Implants. 2011;26(2):404–14.

    PubMed  Google Scholar 

  55. Jovanovic SA, Nevins M. Bone formation utilizing titanium-reinforced barrier membranes. Int J Periodontics Restorative Dent. 1995;15(1):56–69.

    PubMed  Google Scholar 

  56. Hämmerle CH, Jung RE. Bone augmentation by means of barrier membranes. Periodontol. 2000;2003(33):36–53. https://doi.org/10.1046/j.0906-6713.2003.03304.x.

    Article  Google Scholar 

  57. Urban IA, Lozada JL, Jovanovic SA, Nagursky H, Nagy K. Vertical ridge augmentation with titanium-reinforced, dense-PTFE membranes and a combination of particulated autogenous bone and anorganic bovine bone-derived mineral: a prospective case series in 19 patients. Int J Oral Maxillofac Implants. 2014;29(1):185–93. https://doi.org/10.11607/jomi.3346.

    Article  PubMed  Google Scholar 

  58. Novaes AB Jr, Souza SL. Acellular dermal matrix graft as a membrane for guided bone regeneration: a case report. Implant Dent. 2001;10(3):192–6. https://doi.org/10.1097/00008505-200107000-00009.

    Article  PubMed  Google Scholar 

  59. Borges GJ, Novaes AB Jr, Grisi MF, Palioto DB, Taba M Jr, de Souza SL. Acellular dermal matrix as a barrier in guided bone regeneration: a clinical, radiographic and histomorphometric study in dogs. Clin Oral Implants Res. 2009;20(10):1105–15. https://doi.org/10.1111/j.1600-0501.2009.01731.x. Epub 2009 Jun 10

    Article  PubMed  Google Scholar 

  60. Castro AB, Meschi N, Temmerman A, Pinto N, Lambrechts P, Teughels W, et al. Regenerative potential of leucocyte- and platelet-rich fibrin. Part B: sinus floor elevation, alveolar ridge preservation and implant therapy. A systematic review. J Clin Periodontol. 2017;44(2):225–34. https://doi.org/10.1111/jcpe.12658. Epub 2017 Jan 10

    Article  PubMed  PubMed Central  Google Scholar 

  61. Castro AB, Meschi N, Temmerman A, Pinto N, Lambrechts P, Teughels W, et al. Regenerative potential of leucocyte- and platelet-rich fibrin. Part a: intra-bony defects, furcation defects and periodontal plastic surgery. A systematic review and meta-analysis. J Clin Periodontol. 2017;44(1):67–82. https://doi.org/10.1111/jcpe.12643.

    Article  PubMed  Google Scholar 

  62. Castro AB, Herrero ER, Slomka V, Pinto N, Teughels W, Quirynen M. Antimicrobial capacity of leucocyte-and platelet rich fibrin against periodontal pathogens. Sci Rep. 2019;9(1):8188. https://doi.org/10.1038/s41598-019-44755-6.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Urban I, Caplanis N, Lozada JL. Simultaneous vertical guided bone regeneration and guided tissue regeneration in the posterior maxilla using recombinant human platelet-derived growth factor: a case report. J Oral Implantol. 2009;35(5):251–6. https://doi.org/10.1563/AAID-JOI-D-09-00004.1.

    Article  PubMed  Google Scholar 

  64. Nevins M, Giannobile WV, McGuire MK, Kao RT, Mellonig JT, Hinrichs JE, et al. Platelet-derived growth factor stimulates bone fill and rate of attachment level gain: results of a large multicenter randomized controlled trial. J Periodontol. 2005;76(12):2205–15. https://doi.org/10.1902/jop.2005.76.12.2205.

    Article  PubMed  Google Scholar 

  65. Simion M, Nevins M, Rocchietta I, Fontana F, Maschera E, Schupbach P, et al. Vertical ridge augmentation using an equine block infused with recombinant human platelet-derived growth factor-BB: a histologic study in a canine model. Int J Periodontics Restorative Dent. 2009;29(3):245–55.

    PubMed  Google Scholar 

  66. Sebaoun JD, Kantarci A, Turner JW, Carvalho RS, Van Dyke TE, Ferguson DJ. Modeling of trabecular bone and lamina dura following selective alveolar decortication in rats. J Periodontol. 2008;79(9):1679–88. https://doi.org/10.1902/jop.2008.080024.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Burkhardt R, Preiss A, Joss A, Lang NP. Influence of suture tension to the tearing characteristics of the soft tissues: an in vitro experiment. Clin Oral Implants Res. 2008;19(3):314–9. https://doi.org/10.1111/j.1600-0501.2007.01352.x.

    Article  PubMed  Google Scholar 

  68. Burkhardt R, Lang NP. Influence of suturing on wound healing. Periodontol 2000. 2015;68(1):270–81. https://doi.org/10.1111/prd.12078.

    Article  PubMed  Google Scholar 

  69. Harwell RC, Ferguson RL. Physiologic tremor and microsurgery. Microsurgery. 1983;4(3):187–92. https://doi.org/10.1002/micr.1920040310.

    Article  PubMed  Google Scholar 

  70. Terra H, Aberg C. Tensile strengths of twelve types of knot employed in surgery, using different suture materials. Acta Chir Scand. 1976;142:1–7.

    Google Scholar 

  71. Gjermo P, Bonesvoll P, Rölla G. Relationship between plaque-inhibiting effect and retention of chlorhexidine in the human oral cavity. Arch Oral Biol. 1974;19(11):1031–4. https://doi.org/10.1016/0003-9969(74)90090-9.

    Article  PubMed  Google Scholar 

  72. Hamp SE, Rosling B, Lindhe J. Effect of chlorhexidine on gingival wound healing in the dog. A histometric study. J Clin Periodontol. 1975;2(3):143–52. https://doi.org/10.1111/j.1600-051x.1975.tb01736.x.

    Article  PubMed  Google Scholar 

  73. Heitz F, Heitz-Mayfield LJ, Lang NP. Effects of post-surgical cleansing protocols on early plaque control in periodontal and/or periimplant wound healing. J Clin Periodontol. 2004;31(11):1012–8. https://doi.org/10.1111/j.1600-051X.2004.00606.x.

    Article  PubMed  Google Scholar 

  74. Ling LJ, Hung SL, Lee CF, Chen YT, Wu KM. The influence of membrane exposure on the outcomes of guided tissue regeneration: clinical and microbiological aspects. J Periodontal Res. 2003;38(1):57–63. https://doi.org/10.1034/j.1600-0765.2003.01641.x.

    Article  PubMed  Google Scholar 

  75. Fontana F, Maschera E, Rocchietta I, Simion M. Clinical classification of complications in guided bone regeneration procedures by means of a nonresorbable membrane. Int J Periodontics Restorative Dent. 2011;31(3):265–73.

    PubMed  Google Scholar 

  76. Thoma DS, Naenni N, Figuero E, Hammerle CHF, Schwarz F, Jung RE, et al. Effects of soft tissue augmentation procedures on peri-implant health or disease: a systematic review and meta-analysis. Clin Oral Implants Res. 2018;29(Suppl 15):32–49. https://doi.org/10.1111/clr.13114.

    Article  PubMed  Google Scholar 

  77. Linkevicius T, Apse P, Grybauskas S, Puisys A. The influence of soft tissue thickness on crestal bone changes around implants: a 1-year prospective controlled clinical trial. Int J Oral Maxillofac Implants. 2009;24(4):712–9.

    PubMed  Google Scholar 

  78. Urban IA, Monje A, Wang HL. Vertical ridge augmentation and soft tissue reconstruction of the anterior atrophic maxillae: a case series. Int J Periodontics Restorative Dent. 2015;35(5):613–23. https://doi.org/10.11607/prd.2481.

    Article  PubMed  Google Scholar 

  79. Ladwein C, Schmelzeisen R, Nelson K, Fluegge TV, Fretwurst T. Is the presence of keratinized mucosa associated with periimplant tissue health? A clinical cross-sectional analysis. Int J Implant Dent. 2015;1(1):11. https://doi.org/10.1186/s40729-015-0009-z.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Roccuzzo M, Grasso G, Dalmasso P. Keratinized mucosa around implants in partially edentulous posterior mandible: 10-year results of a prospective comparative study. Clin Oral Implants Res. 2016;27(4):491–6. https://doi.org/10.1111/clr.12563.

    Article  PubMed  Google Scholar 

  81. Ueno D, Nagano T, Watanabe T, Shirakawa S, Yashima A, Gomi K. Effect of the keratinized mucosa width on the health status of Periimplant and contralateral periodontal tissues: a cross-sectional study. Implant Dent. 2016;25(6):796–801. https://doi.org/10.1097/ID.0000000000000483.

    Article  PubMed  Google Scholar 

  82. Monje A, Blasi G. Significance of keratinized mucosa/gingiva on peri-implant and adjacent periodontal conditions in erratic maintenance compliers. J Periodontol. 2019;90(5):445–53. https://doi.org/10.1002/JPER.18-0471. Epub 2018 Dec 7

    Article  PubMed  Google Scholar 

  83. Cairo F, Pagliaro U, Nieri M. Soft tissue management at implant sites. J Clin Periodontol. 2008;35(8 Suppl):163–7. https://doi.org/10.1111/j.1600-051X.2008.01266.x.

    Article  PubMed  Google Scholar 

  84. Chiu YW, Lee SY, Lin YC, Lai YL. Significance of the width of keratinized mucosa on peri-implant health. J Chin Med Assoc. 2015;78(7):389–94. https://doi.org/10.1016/j.jcma.2015.05.001.

    Article  PubMed  Google Scholar 

  85. Thoma DS, Benić GI, Zwahlen M, Hämmerle CH, Jung RE. A systematic review assessing soft tissue augmentation techniques. Clin Oral Implants Res. 2009;20(Suppl 4):146–65. https://doi.org/10.1111/j.1600-0501.2009.01784.x.

    Article  PubMed  Google Scholar 

  86. Zuhr O, Bäumer D, Hürzeler M. The addition of soft tissue replacement grafts in plastic periodontal and implant surgery: critical elements in design and execution. J Clin Periodontol. 2014;41(Suppl 15):S123–42. https://doi.org/10.1111/jcpe.12185.

    Article  PubMed  Google Scholar 

  87. Urban IA, Lozada JL, Nagy K, Sanz M. Treatment of severe mucogingival defects with a combination of strip gingival grafts and a xenogeneic collagen matrix: a prospective case series study. Int J Periodontics Restorative Dent. 2015;35(3):345–53. https://doi.org/10.11607/prd.2287.

    Article  PubMed  Google Scholar 

  88. Edel A. Clinical evaluation of free connective tissue grafts used to increase the width of keratinised gingiva. J Clin Periodontol. 1974;1(4):185–96. https://doi.org/10.1111/j.1600-051x.1974.tb01257.x.

    Article  PubMed  Google Scholar 

  89. Orsini M, Orsini G, Benlloch D, Aranda JJ, Lázaro P, Sanz M. Esthetic and dimensional evaluation of free connective tissue grafts in prosthetically treated patients: a 1-year clinical study. J Periodontol. 2004;75(3):470–7. https://doi.org/10.1902/jop.2004.75.3.470.

    Article  PubMed  Google Scholar 

  90. Silverstein LH, Kurtzman D, Garnick JJ, Trager PS, Waters PK. Connective tissue grafting for improved implant esthetics: clinical technique. Implant Dent. 1994;3(4):231–4. https://doi.org/10.1097/00008505-199412000-00003.

    Article  PubMed  Google Scholar 

  91. Bouri A Jr, Bissada N, Al-Zahrani MS, Faddoul F, Nouneh I. Width of keratinized gingiva and the health status of the supporting tissues around dental implants. Int J Oral Maxillofac Implants. 2008;23(2):323–6.

    PubMed  Google Scholar 

  92. Chen ST, Wilson TG Jr, Hämmerle CHF. Immediate or early placement of implants following tooth extraction: review of biologic basis, clinical procedures, and outcomes. Int J Oral Maxillofac Implants. 2004;19(Suppl):12–25.

    PubMed  Google Scholar 

  93. Wessing B, Urban I, Montero E, Zechner W, Hof M, Alández CHJ, Alández MN, Polizzi G, Meloni S, Sanz M. A multicenter randomized controlled clinical trial using a new reabsorbable non-cross-linked collagen membrane for guided bone regeneration at dehisced single implants sites: interim results of a bone augmentation procedure. Clin Oral Implants Res. 2016;28(11):e218–26. https://doi.org/10.1111/clr.12995.

    Article  PubMed  PubMed Central  Google Scholar 

  94. Lee EA. Subperiosteal minimally invasive aesthetic ridge augmentation technique (SMART): a new standard for bone reconstruction of the jaws. Int J Periodontics Restorative Dent. 2017;37(2):165–73. https://doi.org/10.11607/prd.3171.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors declare no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lizette Llamosa-Cáñez .

Editor information

Editors and Affiliations

1 Electronic Supplementary Material

(MP4 55895 kb)

(MP4 57018 kb)

(MP4 56488 kb)

(MP4 39870 kb)

(MP4 25609 kb)

(MP4 44534 kb)

(MP4 91231 kb)

(MP4 103228 kb)

(MP4 46187 kb)

(MP4 22333 kb)

(MP4 12920 kb)

(MP4 238320 kb)

(MP4 65384 kb)

(MP4 56177 kb)

(MP4 38002 kb)

(MP4 74184 kb)

(MP4 156466 kb)

(MP4 111976 kb)

(MP4 49902 kb)

(MP4 76986 kb)

(MP4 87940 kb)

(MP4 166229 kb)

(MP4 49378 kb)

(MP4 125838 kb)

(MP4 252832 kb)

(MP4 48555 kb)

(MP4 250254 kb)

(MP4 228826 kb)

(MP4 121616 kb)

(MP4 253206 kb)

(MP4 173234 kb)

(MP4 131985 kb)

(MP4 151003 kb)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Llamosa-Cáñez, L. (2022). Microsurgery in Guided Bone Regeneration. In: Chan, HL.(., Velasquez-Plata, D. (eds) Microsurgery in Periodontal and Implant Dentistry. Springer, Cham. https://doi.org/10.1007/978-3-030-96874-8_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-96874-8_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-96873-1

  • Online ISBN: 978-3-030-96874-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics