Skip to main content

Geothermal Potential Across Europe

  • 123 Accesses

Part of the SpringerBriefs in Earth System Sciences book series (BRIEFSEARTHSYST)

Abstract

This chapter introduces the geothermal conditions in Europe and explains the distribution of geothermally favorable regions. From a geological perspective, Europe is split along an intracontinental suture zone extending from the North Sea to the Black Sea. Geothermal conditions, heat flow, and temperature gradients are higher southwest of the suture zone than northeast of it, which is related to the different ages of the crust in these regions. Consequently, positive geothermal anomalies occur mainly south of the suture zone in regions of active tectonic deformation, for example, in the Rhine Graben or the Pannonian Basin, both of which are known for their hydrothermal reservoirs. However, most geothermal reservoirs in Europe are intracratonic basin-type reservoirs located both southwest and northeast of the suture zone. Due to a high potential in geothermal development, we discuss two of them in detail, the Danish and the Polish Basins. We also give a more detailed overview of the Pannonian Basin with above-average geothermal conditions.

Keywords

  • Geothermal potential
  • Heat flow
  • Geothermal reservoir distribution
  • Poland
  • Sweden
  • Hungary

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-96870-0_2
  • Chapter length: 17 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   39.99
Price excludes VAT (USA)
  • ISBN: 978-3-030-96870-0
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   49.99
Price excludes VAT (USA)
Fig. 2.1

(Limberger and van Wees 2014, used under CC BY 3.0, https://creativecommons.org/licenses/by/3.0/)

Fig. 2.2

Data from Basili et al. (2013), Ziegler and Dèzes (2006), Cloetingh et al. (2010), the European-Mediterranean Earthquake Catalogue (EMEC) (Grünthal and Wahlström 2012), and EMODnet Bathymetry Consortium (2020)

Fig. 2.3

Modified from Buijze et al. (2019), used under CC BY 4.0 (https://creativecommons.org/licenses/by/4.0/) CB: Cornubian batholith, CF: Carpathian Mountains and Foredeep, IVZ: Iceland Volcanic Zones, MB: Molasse Basin, NGB: North German Basin, NDB: Norwegian-Danish Basin, PAN: Pannonian Basin, PL: Polish Lowlands, RVG: Ruhr Valley Graben, TLG: Tuscany-Latium Geothermal Area, URG: Upper Rhine Graben, WNB: West Netherlands Basin, AB: Aquitaine Basin

Fig. 2.4

Reproduced from Gehlin et al. (2019) with permission from the Geological Survey of Sweden. Right: Tectonic setting of south Sweden in the Danish Basin with location of main fault zones and the TESZ, here termed Sorgenfrei-Tornquist Zone, and cross-section location. The cross section illustrates the transition from the sedimentary succession in the Danish Basin to mostly crystalline rocks towards the NE. The location of the DGE-1 well close to Lund is also marked. Modified from Rosberg and Erlström (2019), used under CC BY 4.0 (https://creativecommons.org/licenses/by/4.0/)

Fig. 2.5
Fig. 2.6

All figures modified from Grad and Polkowski (2016), used under CC BY (https://creativecommons.org/licenses/)

Fig. 2.7
Fig. 2.8
Fig. 2.9

Reprinted from Békési et al. (2018) with permission from Elsevier. See Békési et al. (2018) for more information about the geothermal conditions in the gray boxes as well as the two cross sections. Right: Depth of the 90  \({}^{\circ }\text {C}\) isotherm. Reproduced from Toth (2016) with permission from the Hungarian Energy and Public Utility Regulatory Authority

Fig. 2.10

Reprinted from Horváth et al. (2015) with permission from Elsevier

Fig. 2.11

References

  • Artemieva IM, Thybo H, Kaban MK (2006) Deep Europe today: geophysical synthesis of the upper mantle structure and lithospheric processes over 3.5 Ga. Geolog Soc Lond Memoirs 32(1):11–41. https://doi.org/10.1144/GSL.MEM.2006.032.01.02

  • Basili R, Kastelic V, Demircioglu MB, Garcia Moreno D, Nemser ES, Petricca P, Sboras SP, Besana-Ostman GM, Cabral J, Camelbeeck T, Caputo R, Danciu L, Domaç H, Fonseca JFdBD, García-Mayordomo J, Giardini D, Glavatovic B, Gulen L, Ince Y, Pavlides S, Sesetyan K, Tarabusi G, Tiberti MM, Utkucu M, Valensise G, Vanneste K, Vilanova SP, Wössner J (2013) European Database of Seismogenic Faults (EDSF). https://doi.org/10.6092/INGV.IT-SHARE-EDSF

  • Békési E, Lenkey L, Limberger J, Porkoláb K, Balázs A, Bonté D, Vrijlandt M, Horváth F, Cloetingh S, van Wees JD (2018) Subsurface temperature model of the Hungarian part of the Pannonian Basin. Global Planet Change 171:48–64. https://doi.org/10.1016/j.gloplacha.2017.09.020

    CrossRef  Google Scholar 

  • Buijze L, van Bijsterveldt L, Cremer H, Paap B, Veldkamp H, Wassing BB, van Wees JD, van Yperen GC, ter Heege JH (2019) Review of induced seismicity in geothermal systems worldwide and implications for geothermal systems in the Netherlands. Neth J Geosci 98. https://doi.org/10.1017/njg.2019.6

  • Bujakowski W, Tomaszewska B, Miecznik M (2016) The Podhale geothermal reservoir simulation for long-term sustainable production. Renew Energy 99:420–430. https://doi.org/10.1016/j.renene.2016.07.028

    CrossRef  Google Scholar 

  • Cloetingh S, van Wees JD, Ziegler PA, Lenkey L, Beekman F, Tesauro M, Förster A, Norden B, Kaban M, Hardebol N, Bonté D, Genter A, Guillou-Frottier L, Ter Voorde M, Sokoutis D, Willingshofer E, Cornu T, Worum G (2010) Lithosphere tectonics and thermo-mechanical properties: an integrated modelling approach for enhanced geothermal systems exploration in Europe. Earth-Sci Rev 102(3):159–206. https://doi.org/10.1016/j.earscirev.2010.05.003

    CrossRef  Google Scholar 

  • Dovenyi P, Horváth F, Liebe P, Gálfi J, Erki I (1983) Geothermal conditions of Hungary. Geofizikai Közlemények 29(1)

    Google Scholar 

  • EMODnet Bathymetry Consortium (2020) EMODnet Digital Bathymetry (DTM). https://doi.org/10.12770/bb6a87dd-e579-4036-abe1-e649cea9881a

  • Erlström M, Boldreel LO, Lindström S, Kristensen L, Mathiesen A, Andersen MS, Kamla E, Nielsen LH (2018) Stratigraphy and geothermal assessment of Mesozoic sandstone reservoirs in the Øresund Basin – exemplified by well data and seismic profiles. Bull Geol Soc Den

    Google Scholar 

  • Garrison GH, Guðlaugsson SÞ, Ádám L, Ingimundarson A, Cladouhos TT, Petty S (2016) The South Hungary enhanced geothermal system (SHEGS) demonstration project. GRC Trans 40:10

    Google Scholar 

  • Gehlin S, Andersson O, Rosberg JE (2019) Geothermal energy use, country update for Sweden. In: Proceedings world geothermal congress 2020, Reykjavik, Iceland, p 10

    Google Scholar 

  • Grad M, Polkowski M (2016) Seismic basement in Poland. Int J Earth Sci 105(4):1199–1214. https://doi.org/10.1007/s00531-015-1233-8

    CrossRef  Google Scholar 

  • Gregersen S, Wiejacz P, Dębski W, Domanski B, Assinovskaya B, Guterch B, Mäntyniemi P, Nikulin V, Pacesa A, Puura V et al (2007) The exceptional earthquakes in Kaliningrad district, Russia on September 21, 2004. Phys Earth Planet Inter 164(1–2):63–74. https://doi.org/10.1016/j.pepi.2007.06.005

    CrossRef  Google Scholar 

  • Grünthal G, Wahlström R (2012) The European-Mediterranean Earthquake Catalogue (EMEC) for the last millennium. J Seismol 16(3):535–570. https://doi.org/10.1007/s10950-012-9302-y

    CrossRef  Google Scholar 

  • Guterch B (2015) Seismicity in Poland: updated seismic catalog. In: Guterch B, Kozák J (eds) Studies of historical earthquakes in Southern Poland: Outer Western Carpathian Earthquake of December 3, 1786, and First Macroseismic Maps in 1858–1901, GeoPlanet: earth and planetary sciences. Springer International Publishing, Cham, pp 75–101. https://doi.org/10.1007/978-3-319-15446-6_3

  • Heidbach O, Tingay M, Barth A, Reinecker J, Kurfess D, Mueller B (2009) The 2008 database release of the World Stress Map Project. https://doi.org/10.1594/GFZ.WSM.REL2008

  • Horváth F, Musitz B, Balázs A, Végh A, Uhrin A, Nádor A, Koroknai B, Pap N, Tóth T, Wórum G (2015) Evolution of the Pannonian basin and its geothermal resources. Geothermics 53:328–352. https://doi.org/10.1016/j.geothermics.2014.07.009

    CrossRef  Google Scholar 

  • Lassen A, Thybo H (2012) Neoproterozoic and Palaeozoic evolution of SW Scandinavia based on integrated seismic interpretation. Precambrian Res 204–205:75–104. https://doi.org/10.1016/j.precamres.2012.01.008

    CrossRef  Google Scholar 

  • Limberger J, van Wees JD (2013) European temperature models in the framework of GEOELEC : linking temperature and heat flow data sets to lithosphere models. In: European geothermal congress 2013, Pisa, Italy, p 9

    Google Scholar 

  • Limberger J, van Wees JD (2014) 3D subsurface temperature model of Europe for geothermal exploration. In: Conference Proceedings, 76th EAGE Conference and Exhibition 2014. https://doi.org/10.3997/2214-4609.20141657

  • Lizurek G, Plesiewicz B, Wiejacz P, Wiszniowski J, Trojanowski J (2013) Seismic event near Jarocin (Poland). Acta Geophys 61(1):26–36. https://doi.org/10.2478/s11600-012-0052-6

    CrossRef  Google Scholar 

  • Lund B, Tryggvason A, Chan N, Högdahl K, Buhcheva D, Bödvarsson R (2016) Understanding intraplate earthquakes in Sweden: the where and why. In: Geophysical research abstracts, Vienna, Austria, vol 18, pp EPSC2016–16441

    Google Scholar 

  • Miecznik M, Sowiżdżał A, Tomaszewska B, Pająk L (2015) Modelling geothermal conditions in part of the Szczecin Trough – the Chociwel area. Geologos 21(3):187–196. https://doi.org/10.1515/logos-2015-0013

    CrossRef  Google Scholar 

  • Nádor A, Kujbus A, Tóth A (2019) Geothermal energy use, country update for Hungary. Eur Geotherm Congress 2019:11

    Google Scholar 

  • Rosberg JE, Erlström M (2019) Evaluation of the Lund deep geothermal exploration project in the Romeleåsen Fault Zone, South Sweden: a case study. Geotherm Energy 7(1). https://doi.org/10.1186/s40517-019-0126-7

  • Rybach L, et al (1979) Geothermal resources: an introduction with emphasis on low temperature reservoirs. In: Symposium on geothermal energy and its direct uses in the Eastern United States, U.S. Geothermal resources council, special report, vol 5, pp 1–7

    Google Scholar 

  • Sowiżdżał A (2010) Perspektywy wykorzystania zasobów wód termalnych jury dolnej z regionu niecki szczeciñskiej (pó\(^3\)nocno-zachodnia Polska) w ciep\(^3\)ownictwie, balneologii i rekreacji [Prospects of use of thermal water resources of Lower Jurassic aquifer in the Szczecin Trough (NW Poland) for space heating and balneology and recreation]. Przegląd Geologiczny 58:9

    Google Scholar 

  • Sowiżdżał A (2016) Possibilities of petrogeothermal energy resources utilization in central Poland. Appl Ecol Environ Res 14(2):555–574. https://doi.org/10.15666/aeer/1402_555574

  • Sowiżdżał A (2018) Geothermal energy resources in Poland – overview of the current state of knowledge. Renew Sustain Energy Rev 82:4020–4027. https://doi.org/10.1016/j.rser.2017.10.070

    CrossRef  Google Scholar 

  • Sowiżdżał A, Kaczmarczyk M (2016) Analysis of thermal parameters of Triassic, Permian and Carboniferous sedimentary rocks in central Poland. Geolog J 51(1):65–76. https://doi.org/10.1002/gj.2608

    CrossRef  Google Scholar 

  • Sowiżdżał A, Semyrka R (2016) Analyses of permeability and porosity of sedimentary rocks in terms of unconventional geothermal resource explorations in Poland. Geologos 22(2):149–163. https://doi.org/10.1515/logos-2016-0015

    CrossRef  Google Scholar 

  • Sowiżdżał A, Hajto M, Górecki W (2016) The most prospective areas for geothermal energy utilization for heating and power generation in Poland. In: Proceedings European geothermal congress 2016, p 8

    Google Scholar 

  • Toth A (2016) The geothermal Atlas of Hungary. Hungarian Energy and Public Utility Regulatory Authority pp 125–133

    Google Scholar 

  • Toth A (2019) Prospects for geothermal power projects in Hungary. In: ResearchGate

    Google Scholar 

  • Tóth L, Győri E, Mónus P, Zsíros T (2006) Seismic hazard in the Pannonian Region. In: Pinter N, Gyula G, Weber J, Stein S, Medak D (eds) The Adria Microplate: GPS Geodesy, Tectonics and Hazards. Springer Netherlands, Dordrecht, Nato Science Series: IV: earth and environmental sciences, pp 369–384. https://doi.org/10.1007/1-4020-4235-3_25

  • Voss PH, Larsen TB, Ottemöller L, Gregersen S (2009) Earthquake in southern Sweden wakes up Denmark on 16 December 2008. GEUS Bull 17:9–12. https://doi.org/10.34194/geusb.v17.5002

  • van Wees JD, Boxem T, Angelino L, Dumas P (2013) A prospective study on the geothermal potential in the EU. GEOELEC deliverable D2.5, The GEOELEC consortium. http://www.geoelec.eu/wp-content/uploads/2011/09/D-2.5-GEOELEC-prospective-study.pdf. Accessed 22 Oct 2021

  • Wójcicki A, Sowiżdżał A, Bujakowski W (2013) Evaluation of potential, thermal balance and prospective geological structures for needs of closed geothermal systems (Hot Dry Rocks) in Poland. Warszawa/Kraków (in Polish)

    Google Scholar 

  • Ziegler PA, Dèzes P (2006) Crustal evolution of Western and Central Europe. Geolog Soc Lond Memoirs 32(1):43–56. https://doi.org/10.1144/GSL.MEM.2006.032.01.03

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johanna Fink .

Rights and permissions

Reprints and Permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Fink, J., Heim, E., Klitzsch, N. (2022). Geothermal Potential Across Europe. In: State of the Art in Deep Geothermal Energy in Europe. SpringerBriefs in Earth System Sciences. Springer, Cham. https://doi.org/10.1007/978-3-030-96870-0_2

Download citation