Skip to main content

Digital Twin for Simulation and Evaluation of Assistive Navigation Systems

  • Chapter
  • First Online:
Digital Twins for Digital Transformation: Innovation in Industry

Abstract

The assistive navigation of visually impaired individuals requires the development of different algorithms for obstacle detection, recognition, avoidance, and path planning. The assessment and optimization of such algorithms in the real world is a painstaking process that requires repetitive measurements under stable conditions, which is usually difficult to achieve and costly. To this end, digital twin environments can be used to replicate relevant real-life situations, enabling the evaluation and optimization of algorithms through adjustable and cost-effective simulations. This chapter presents a digital twin framework for the simulation and evaluation of assistive navigation systems, and its application in the context of a camera-based wearable system for visually impaired individuals in an outdoor cultural space. The system incorporates an obstacle avoidance algorithm based on fuzzy logic. The utility and the effectiveness of this framework are demonstrated with an indicative simulation study.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://digital-twin.innoisys.com.

References

  1. Alkhafaji, A., Fallahkhair, S., Cocea, M., Crellin, J.: A survey study to gather requirements for designing a mobile service to enhance learning from cultural heritage, pp. 547–50 (2016). https://doi.org/10.1007/978-3-319-45153-4_60

  2. Asiain, J., Godoy, J.: Navigation in large groups of robots. Curr. Robot. Rep. 1(4), 203–213 (2020)

    Article  Google Scholar 

  3. Bennett, C. R., Bailin, E. S., Gottlieb, T. K., Bauer, C. M., Bex, P. J., Merabet, L. B.: Assessing visual search performance in ocular compared to cerebral visual impairment using a virtual reality simulation of human dynamic movement. In: Proceedings of the Technology, Mind, and Society, ACM (2018)

    Google Scholar 

  4. Bochinski, E., Eiselein, V., Sikora, T.: High-speed tracking-by-detection without using image information. In: 2017 14th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS), pp. 1–6 (2017)

    Google Scholar 

  5. Bochkovskiy, A., Wang, C.-Y., Mark Liao, H.-Y.: Yolov4: optimal speed and accuracy of object detection (2020). arXiv:2004.10934

  6. Chacón, M.I.: Fuzzy logic for image processing: definition and applications of a fuzzy image processing scheme. In: Advanced Fuzzy Logic Technologies in Industrial Applications, pp. 101–113 (2006)

    Google Scholar 

  7. Chai, X., Gao, F., Qi, C., Pan, Y., Xu, Y., Zhao, Y.: Obstacle avoidance for a hexapod robot in unknown environment. Sci. China Technol. Sci. 60(6), 818–831 (2017)

    Google Scholar 

  8. Chen, Q., Wu, L., Chen, Z., Lin, P., Cheng, S., Wu, Z.: Smartphone based outdoor navigation and obstacle avoidance system for the visually impaired. In: International Conference on Multi-Disciplinary Trends in Artificial Intelligence, pp. 26–37 (2019)

    Google Scholar 

  9. Curtis, S., Best, A., Manocha, D.: Menge: a modular framework for simulating crowd movement. Collect. Dyn. 1, 1–40 (2016)

    Article  Google Scholar 

  10. Dakopoulos, D., Bourbakis, N.G.: Wearable obstacle avoidance electronic travel aids for blind: a survey. IEEE Trans. Syst. Man Cybern. Part C (Applications and Reviews) 40(1), 25–35 (2009)

    Google Scholar 

  11. Diamantis, D.E., Koutsiou, D.-C.C., Iakovidis, D.K.:. Staircase detection using a lightweight look-behind fully convolutional neural network. In: International Conference on Engineering Applications of Neural Networks, pp. 522–532 (D.K.)

    Google Scholar 

  12. Dimas, G., Diamantis, D.E., Kalozoumis, P., Iakovidis, D.K.: Uncertainty-aware visual perception system for outdoor navigation of the visually challenged. Sensors 20(8), 2385 (2020). https://www.mdpi.com/1424-8220/20/8/2385

  13. Fraichard, T., Levesy, V.: From crowd simulation to robot navigation in crowds. IEEE Robot. Autom. Lett. 5(2), 729–735 (2020)

    Article  Google Scholar 

  14. Gopal, M.: Applied machine learning. McGraw-Hill Education (2019)

    Google Scholar 

  15. Guldenring, R., Görner, M., Hendrich, N., Jacobsen, N. J., Zhang, J.: Learning local planners for human-aware navigation in indoor environments. In: 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 6053–6060 (2020)

    Google Scholar 

  16. Han, Y.-J., Kim, I.-S., Hong, Y.-D.: Optimization-based humanoid robot navigation using monocular camera within indoor environment. ETRI J. 40(4), 446–457 (2018)

    Article  Google Scholar 

  17. Hungerford, K., Dasgupta, P., Guruprasad, K.R.: A repartitioning algorithm to guarantee complete, non-overlapping planar coverage with multiple robots. In: Springer Tracts in Advanced Robotics, pp. 33–48. Springer Japan (2016)

    Google Scholar 

  18. Iacono, M., Sgorbissa, A.: Path following and obstacle avoidance for an autonomous UAV using a depth camera. Robot. Auton. Syst. 106, 38–46 (2018)

    Article  Google Scholar 

  19. Iakovidis, D. K., Diamantis, D., Dimas, G., Ntakolia, C., Spyrou, E.: Digital Enhancement of Cultural Experience and Accessibility for the Visually Impaired, pp. 237–271 (2019)

    Google Scholar 

  20. Inamura, T., Mizuchi, Y.: Competition design to evaluate cognitive functions in human-robot interaction based on immersive VR. In: Robot World Cup, pp. 84–94 (2017)

    Google Scholar 

  21. Inamura, T., Mizuchi., Y.: SIGVerse: a cloud-based vr platform for research on social and embodied human-robot interaction (2020). arXiv:2005.00825. http://arxiv.org/abs/2005.00825

  22. Katz, B. F., Kammoun, S., Parseihian, G., Gutierrez, O., Brilhault, A., Auvray, M., Jouffrais, C.: NAVIG: augmented reality guidance system for the visually impaired. Virtual Reality, 16(4), 253–269 (2012).https://doi.org/10.1007/s10055-012-0213-6

  23. Kim, S., Bera, A., Best, A., Chabra, R., & Manocha, D.: Interactive and adaptive data-driven crowd simulation. In: 2016 IEEE Virtual Reality (VR), pp. 29–38 (2016)

    Google Scholar 

  24. Kreimeier, J., Götzelmann, T.: First steps towards walk-in-place locomotion and haptic feedback in virtual reality for visually impaired. In: Extended Abstracts of the 2019 CHI Conference on Human Factors in Computing Systems, ACM (2019)

    Google Scholar 

  25. Kumar, N., Takács, M., Vámossy, Z.: Robot Navigation In Unknown Environment Using Fuzzy Logic. In: 2017 IEEE 15th International Symposium on Applied Machine Intelligence and Informatics (SAMI), pp. 279–284 (2017)

    Google Scholar 

  26. Kunz, A., Miesenberger, K., Zeng, L., Weber, G.: Virtual navigation environment for blind and low vision people. In: Lecture Notes in Computer Science, pp. 114–122. Springer International Publishing (2018)

    Google Scholar 

  27. Li, Y., Dai, S., Shi, Y., Zhao, L., Ding, M.: Navigation simulation of a Mecanum wheel mobile robot based on an improved A* algorithm in Unity3D. Sensors. 19(13), 2976 (2019)

    Google Scholar 

  28. Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu, C. Y., Berg, A. C.: Ssd: single shot multibox detector. In: European Conference on Computer Vision, pp. 21–37 (2016)

    Google Scholar 

  29. Manjari, K., Verma, M., Singal, G.: A Survey on assistive technology for visually impaired. Internet Things 11, 100188 (2020)

    Google Scholar 

  30. Maury, B., Faure S.: Crowds in Equations: An Introduction to the Microscopic Modeling of Crowds. World Scientific (2018)

    Google Scholar 

  31. McIntosh, J., Marques, B., Harkness, R.: Simulating impairment through virtual reality. Int. J. Archit. Comput. 18(3), 284–295 (2020)

    Google Scholar 

  32. Mohanan, M.G., Salgoankar, A.: A survey of robotic motion planning in dynamic environments. Robot. Auton. Syst. 100, 171–185 (2018)

    Article  Google Scholar 

  33. Moldoveanu, A. D. B., Ivascu, S., Stanica, I., Dascalu, M. I., Lupu, R., Ivanica, G., Morar, A.: Mastering an advanced sensory substitution device for visually impaired through innovative virtual training. In: 2017 IEEE 7th International Conference on Consumer Electronics-Berlin (ICCE-Berlin) pp. 120–125 (2017, September).  IEEE

    Google Scholar 

  34. Natesh, B.: Offline Text To Speech (TTS) converter for Python3 (2021). https://github.com/nateshmbhat/pyttsx3.

  35. Ng, J., Bräunl, T.: Performance comparison of bug navigation algorithms. J. Intell. Rob. Syst. 50(1), 73–84 (2007)

    Article  Google Scholar 

  36. Ntakolia, C., Dimas, G., Iakovidis, D.K.: User-centered system design for assisted navigation of visually impaired individuals in outdoor cultural environments. Univers. Access Inf. Soc., 1–26 (2020)

    Google Scholar 

  37. Pang, B., Song, Y., Zhang, C., Wang, H., Yang, R.: A swarm robotic exploration strategy based on an improved random walk method. J. Robot. 2019, 1–9 (2019)

    Google Scholar 

  38. Pratama, P. S., Nguyen, T. H., Kim, H. K., Kim, D. H., Kim, S. B.: Positioning and obstacle avoidance of automatic guided vehicle in partially known environment. Int. J. Control Autom. Syst. 14(6), 1572–1581 (2016)

    Google Scholar 

  39. Redmon, J., Divvala, S., Girshick, R., Farhadi, A.: You only look once: unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 779–88 (2016)

    Google Scholar 

  40. Rosique, F., Navarro, P.J., Fernández, C., Padilla, A.: A systematic review of perception system and simulators for autonomous vehicles research. Sensors 19(3), 648 (2019)

    Article  Google Scholar 

  41. Saeedi, S., Trentini, M., Seto, M., Li, H.: Multiple-robot simultaneous localization and mapping: a review. J. Field Robot. 33(1), 3–46 (2016).https://doi.org/10.1002/rob.21620

  42. Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., Chen, L. C.: Mobilenetv2: inverted residuals and linear bottlenecks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4510–4520 (2018)

    Google Scholar 

  43. Shah, M.N., Ghazali, M.: A Systematic Review on Digital Technology for Enhancing User Experience in Museums, pp. 35–46 (2018).https://doi.org/10.1007/978-981-13-1628-9_4

  44. Shi, C., Wang, Y., Yang, J.: A Local obstacle avoidance method for mobile robots in partially known environment. Robot. Auton. Syst. 58(5), 425–434 (2010)

    Article  Google Scholar 

  45. Stock, S., Erler, C., Stork, W.: Realistic simulation of progressive vision diseases in virtual reality. In: Proceedings of the 24th ACM Symposium on Virtual Reality Software and Technology, ACM (2018)

    Google Scholar 

  46. Tao, Y., Ding, L., Ganz, A.: Indoor navigation validation framework for visually impaired users. IEEE Access 5, 21763–21773 (2017)

    Article  Google Scholar 

  47. Tapu, R., Mocanu, B., Zaharia, T.: Wearable assistive devices for visually impaired: a state of the art survey. In: Pattern Recognition Letters (2018)

    Google Scholar 

  48. Vaishnav, D., Rama Rao, B., Bade, D.: Wearable assistance device for the visually impaired. In: Advances in Machine Learning and Computational Intelligence, pp. 667–676. Springer (2021)

    Google Scholar 

  49. Wang, D., Li, W., Liu, X., Li, N., Zhang, C.: UAV environmental perception and autonomous obstacle avoidance: a deep learning and depth camera combined solution. Comput. Electron. Agricul. 175 105523 (2020)

    Google Scholar 

  50. Weiss, M., Chamorro, S., Girgis, R., Luck, M., Kahou, S. E., Cohen, J. P., Pal, C.: Navigation agents for the visually impaired: a sidewalk simulator and experiments. In: Proceedings of the Conference on Robot Learning, Proceedings of Machine Learning Research, eds. Leslie Pack Kaelbling, Danica Kragic, and Komei Sugiura. PMLR, pp. 1314–1327 (2020). http://proceedings.mlr.press/v100/weiss20a.html

  51. Wyrabkiewicz, K., Tarczewski, T., Niewiara, Ł.: Local path planning for autonomous mobile robot based on APF-BUG algorithm with ground quality indicator. In: Advanced, Contemporary Control, pp. 979–990. Springer (2020)

    Google Scholar 

  52. Xu, Q.-L., Yu, T., Bai, J.: The mobile robot path planning with motion constraints based on bug algorithm. In: 2017 Chinese Automation Congress (CAC), pp. 2348–2352 (2017)

    Google Scholar 

  53. Zapf, M.P.H., Boon, M.-Y., Lovell, N.H., Suaning, G.J.: Assistive peripheral phosphene arrays deliver advantages in obstacle avoidance in simulated end-stage retinitis pigmentosa: a virtual-reality study. J. Neural Eng. 13(2), 26022 (2016)

    Google Scholar 

  54. Zhang, S., Liu, M., Yin, Y., Rong, X., Li, Y., Hua, Z.: Static gait planning method for quadruped robot walking on unknown rough terrain. IEEE Access 7, 177651–177660 (2019)

    Google Scholar 

  55. Zhao, Y., Bennett, C. L., Benko, H., Cutrell, E., Holz, C., Morris, M. R., & Sinclair, M.: Enabling people with visual impairments to navigate virtual reality with a haptic and auditory cane simulation. In: Proceedings of the 2018 CHI conference on human factors in computing systems, pp. 1–14 (2018, April)

    Google Scholar 

Download references

Acknowledgements

This research has been co-financed by the European Union and Greek national funds through the Operational Program Competitiveness, Entrepreneurship and Innovation, under the call RESEARCH–CREATE–INNOVATE (project code: Τ1EDK-02070).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dimitris K. Iakovidis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Diamantis, D.E., Kalozoumis, P.G., Iakovidis, D.K. (2022). Digital Twin for Simulation and Evaluation of Assistive Navigation Systems. In: Hassanien, A.E., Darwish, A., Snasel, V. (eds) Digital Twins for Digital Transformation: Innovation in Industry. Studies in Systems, Decision and Control, vol 423. Springer, Cham. https://doi.org/10.1007/978-3-030-96802-1_8

Download citation

Publish with us

Policies and ethics