Skip to main content

TL from Quantum Tunneling Processes: Data Analysis

  • Chapter
  • First Online:
Luminescence Signal Analysis Using Python

Abstract

In this chapter we present examples of analyzing experimental TL data for materials like feldspars and apatites, which exhibit quantum tunneling processes. The models and relevant equations for these types of signals were presented in the previous chapter. We use the Kitis-Pagonis analytical equation (KP-TL) to analyze TL signals from feldspars which exhibit anomalous fading (AF) phenomena, and provide the Python code for analyzing experimental AF data. Several examples are presented of using Python to fit single-peak and multi-peak TL data, by using the original KP-TL equation, as well as the transformed version of the KP-TL equation. We also provide the Python code for determining the optimal number of components in the TL signal from feldspars.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. V. Pagonis, C. Schmidt, S. Kreutzer, Simulating feldspar luminescence phenomena using R. J. Lumin. 235, 117999 (2021)

    Google Scholar 

  2. G.S. Polymeris, N. Tsirliganis, Z. Loukou, G. Kitis, A comparative study of the anomalous fading effects of TL and OSL signals of Durango apatite. Phys. Status Solidi (a) 203(3), 578–590 (2006)

    Article  ADS  Google Scholar 

  3. G. Kitis, V. Pagonis, Analytical solutions for stimulated luminescence emission from tunneling recombination in random distributions of defects. J. Lumin. 137, 109–115 (2013)

    Article  Google Scholar 

  4. G. Kitis, V. Pagonis, Properties of thermoluminescence glow curves from tunneling recombination processes in random distributions of defects. J. Lumin. 153, 118–124 (2014)

    Article  Google Scholar 

  5. V. Pagonis, N. Brown, G.S. Polymeris, G. Kitis, Comprehensive analysis of thermoluminescence signals in Mg\(_4\)BO\(_7\): Dy, Na dosimeter. J. Lumin. 213, 334–342 (2019)

    Article  Google Scholar 

  6. V. Pagonis, J. Friedrich, M. Discher, A. Müller-Kirschbaum, V. Schlosser, S. Kreutzer, R. Chen, C. Schmidt, Excited state luminescence signals from a random distribution of defects: a new Monte Carlo simulation approach for feldspar. J. Lumin. 207, 266–272 (2019)

    Article  Google Scholar 

  7. G.S. Polymeris, V. Pagonis, G. Kitis, Thermoluminescence glow curves in preheated feldspar samples: an interpretation based on random defect distributions. Radiat. Meas. 97, 20–27 (2017)

    Article  Google Scholar 

  8. Vasilis Pagonis, George Kitis, George S. Polymeris, Quantum tunneling processes in feldspars: using thermoluminescence signals in thermochronometry. Radiat. Meas. 134, 106325 (2020)

    Google Scholar 

  9. G.S. Polymeris, E. Theodosoglou, G. Kitis, N.C. Tsirliganis, A. Koroneos, K.M. Paraskevopoulos, Preliminary results on structural state characterization of K-feldspars by using thermoluminescence. Mediter. Archaeol. Archaeom. 13(3), 155–161 (2013)

    Google Scholar 

  10. V. Pagonis, Luminescence: Data Analysis and Modeling Using R (Use R! Springer International Publishing, 2021)

    Google Scholar 

  11. E. Şahiner, G. Kitis, V. Pagonis, N. Meriç, G.S. Polymeris, Tunnelling recombination in conventional, post-infrared and post-infrared multi-elevated temperature IRSL signals in microcline K-feldspar. J. Lumin. 188, 514–523 (2017)

    Article  Google Scholar 

  12. Vasilis Pagonis, Nathan D. Brown, Jun Peng, George Kitis, George S. Polymeris, On the deconvolution of promptly measured luminescence signals in feldspars. J. Lumin. 239, 118334 (2021)

    Article  Google Scholar 

  13. I.K. Sfampa, G.S. Polymeris, V. Pagonis, E. Theodosoglou, N.C. Tsirliganis, G. Kitis, Correlation of basic TL, OSL and IRSL properties of ten K-feldspar samples of various origins. Nucl. Instrum. Methods Phys. Res., Sect. B 359, 89–98 (2015)

    Article  ADS  Google Scholar 

  14. Olivier Q. De Clercq, Du. Jiaren, Philippe F. Smet, Jonas J. Joos, Dirk Poelman, Predicting the afterglow duration in persistent phosphors: a validated approach to derive trap depth distributions. Phys. Chem. Chem. Phys. 20, 30455–30465 (2018)

    Article  Google Scholar 

  15. N.D. Brown, E.J. Rhodes, Dose-rate dependence of natural TL signals from feldspars extracted from bedrock samples. Radiat. Meas. 128, 106188 (2019)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vasilis Pagonis .

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pagonis, V. (2022). TL from Quantum Tunneling Processes: Data Analysis. In: Luminescence Signal Analysis Using Python. Springer, Cham. https://doi.org/10.1007/978-3-030-96798-7_5

Download citation

Publish with us

Policies and ethics