Skip to main content

TL from Quantum Tunneling Processes: Models

  • Chapter
  • First Online:
Luminescence Signal Analysis Using Python

Abstract

The luminescence signals from several important dosimetric materials cannot be described by using the delocalized transitions models we saw in the previous chapters. Instead, the luminescence mechanism in these materials involves localized transitions, which do not involve the conduction and valence bands. In this chapter we consider several types of models which are based on localized quantum tunneling transitions. We describe four such models: the ground state tunneling model (GST), the irradiation ground state tunneling model (IGST), excited state tunneling model (EST) and thermally-assisted excited state tunneling models (TA-EST). We provide Python codes for exploring the properties of each model, discuss their physical principles, and present approximate analytical solutions to the differential equations describing each model. The main physical concept in these models is that changes take place in the nearest neighbor distribution in a random distribution of defects in a solid. We discuss the g-factor for the anomalous fading phenomenon (AF) of luminescence signals, and present the general analytical Kitis-Pagonis TL equations (KP-TL). We provide an overview of the KP-TL, KP-ITL, KP-CW and KP-LM equations for analysis of TL, ITL, CW-OSL/CW-IRSL and LM-OSL/LM-IRSL signals. Finally we discuss the TA-EST model which can be used in low temperature thermochronometry studies. In the next chapter we apply the models and equations presented in this chapter to analyze TL signals from dosimetric materials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. G. Kitis, V. Pagonis, Analytical solutions for stimulated luminescence emission from tunneling recombination in random distributions of defects. J. Lumin. 137, 109–115 (2013)

    Article  Google Scholar 

  2. M. Jain, B. Guralnik, M.T. Andersen, Stimulated luminescence emission from localized recombination in randomly distributed defects. J. Phys.: Condens. Matter 24(38), 385402 (2012)

    Google Scholar 

  3. N.D. Brown, E.J. Rhodes, T.M. Harrison, Using thermoluminescence signals from feldspars for low-temperature thermochronology. Quat. Geochronol. 42, 31–41 (2017)

    Article  Google Scholar 

  4. Vasilis Pagonis, Christoph Schmidt, Sebastian Kreutzer, Simulating feldspar luminescence phenomena using R. J. Lumin. 235, 117999 (2021)

    Article  Google Scholar 

  5. V. Pagonis, Luminescence: Data Analysis and Modeling Using R (Use R! Springer International Publishing, 2021)

    Google Scholar 

  6. G. Kitis, G.S. Polymeris, V. Pagonis, Stimulated luminescence emission: from phenomenological models to master analytical equations. Appl. Radiat. Isot. 153, 108797 (2019)

    Google Scholar 

  7. V. Pagonis, C. Ankjærgaard, M. Jain, R. Chen, Thermal dependence of time-resolved blue light stimulated luminescence in Al\({_2}\)O\({_3}\):C. J. Lumin. 136, 270–277 (2013)

    Article  Google Scholar 

  8. G. Kitis, G.S. Polymeris, I.K. Sfampa, M. Prokic, N. Meriç, V. Pagonis, Prompt isothermal decay of thermoluminescence in Mg\(_4\)BO\(_7\): Dy, Na and Li\(_4\)BO\(_7\):Cu, in dosimeters. Radiat. Meas. 84, 15–25 (2016)

    Article  Google Scholar 

  9. V. Pagonis, R. Chen, C. Kulp, G. Kitis, An overview of recent developments in luminescence models with a focus on localized transitions. Radiat. Meas. 106, 3–12 (2017)

    Article  Google Scholar 

  10. M. Tachiya, A. Mozumder, Decay of trapped electrons by tunnelling to scavenger molecules in low-temperature glasses. Chem. Phys. Lett. 28(1), 87–89 (1974)

    Article  ADS  Google Scholar 

  11. V. Pagonis, C. Kulp, Monte Carlo simulations of tunneling phenomena and nearest neighbor hopping mechanism in feldspars. J. Lumin. 181, 114–120 (2017)

    Article  Google Scholar 

  12. D.J. Huntley, An explanation of the power-law decay of luminescence. J. Phys.: Condens. Matter 18(4), 1359 (2006)

    ADS  Google Scholar 

  13. D.J. Huntley, O.B. Lian, Some observations on tunnelling of trapped electrons in feldspars and their implications for optical dating. Quat. Sci. Rev. 25(19–20), 2503–2512 (2006)

    Google Scholar 

  14. B. Li, S.H. Li, Investigations of the dose-dependent anomalous fading rate of feldspar from sediments. J. Phys. D Appl. Phys. 41(22), 225502 (2008)

    Article  ADS  Google Scholar 

  15. R.H. Kars, J. Wallinga, IRSL dating of K-feldspars: modelling natural dose response curves to deal with anomalous fading and trap competition. Radiat. Meas. 44(5), 594–599 (2009)

    Article  Google Scholar 

  16. P. Thioulouse, E.A. Giess, I.F. Chang, Investigation of thermally stimulated luminescence and its description by a tunneling model. J. Appl. Phys. 53(12), 9015–9020 (1982)

    Article  ADS  Google Scholar 

  17. I.F. Chang, P. Thioulouse, Treatment of thermostimulated luminescence, phosphorescence, and photostimulated luminescence with a tunneling theory. J. Appl. Phys. 53(8), 5873–5875 (1982)

    Article  ADS  Google Scholar 

  18. M. Lamothe, M. Auclair, C. Hamzaoui, S. Huot, Towards a prediction of long-term anomalous fading of feldspar IRSL. Radiat. Meas. 37(4), 493–498 (2003)

    Article  Google Scholar 

  19. R. Visocekas, Tunneling radiative recombination in K-feldspar sanidine. Nucl. Tracks Radiat. Meas. 21, 175–178 (1993)

    Article  Google Scholar 

  20. R. Visocekas, V. Tale, A. Zink, I. Tale, Trap spectroscopy and tunnelling luminescence in feldspars. Radiat. Meas. 29, 427–434 (1998)

    Article  Google Scholar 

  21. V. Pagonis, G. Kitis, Mathematical aspects of ground state tunneling models in luminescence materials. J. Lumin. 168, 137–144 (2015)

    Article  Google Scholar 

  22. V. Pagonis, J. Friedrich, M. Discher, A. Müller-Kirschbaum, V. Schlosser, S. Kreutzer, R. Chen, C. Schmidt, Excited state luminescence signals from a random distribution of defects: a new Monte Carlo simulation approach for feldspar. J. Lumin. 207, 266–272 (2019)

    Article  Google Scholar 

  23. R. Visocekas, Tunnelling in afterglow: its coexistence and interweaving with thermally stimulated luminescence. Radiat. Prot. Dosimetry. 100, 45–53 (2002)

    Article  Google Scholar 

  24. G.S. Polymeris, N. Tsirliganis, Z. Loukou, G. Kitis, A comparative study of the anomalous fading effects of TL and OSL signals of Durango apatite. Phys. Status Solidi (a) 203(3), 578–590 (2006)

    Article  ADS  Google Scholar 

  25. D.J. Huntley, M. Lamothe, Ubiquity of anomalous fading in K-feldspars and the measurement and correction for it in optical dating. Can. J. Earth Sci. 38(7), 1093–1106 (2001)

    Article  ADS  Google Scholar 

  26. V. Pagonis, M. Jain, K.J. Thomsen, A.S. Murray, On the shape of continuous wave infrared stimulated luminescence signals from feldspars: a case study. J. Lumin. 153, 96–103 (2014)

    Article  Google Scholar 

  27. I.K. Sfampa, G.S. Polymeris, N. Tsirliganis, V. Pagonis, G. Kitis, Prompt isothermal decay of thermoluminescence in an apatite exhibiting strong anomalous fading. Nucl. Instrum. Methods Phys. Res., Sect. B 320, 57–63 (2014)

    Article  ADS  Google Scholar 

  28. I.K. Sfampa, G.S. Polymeris, V. Pagonis, E. Theodosoglou, N.C. Tsirliganis, G. Kitis, Correlation of basic TL, OSL and IRSL properties of ten K-feldspar samples of various origins. Nucl. Instrum. Methods Phys. Res., Sect. B 359, 89–98 (2015)

    Article  ADS  Google Scholar 

  29. G. Kitis, G.S. Polymeris, E. Sahiner, N. Meric, V. Pagonis, Influence of the infrared stimulation on the optically stimulated luminescence in four K-feldspar samples. J. Lumin. 176, 32–39 (2016)

    Article  Google Scholar 

  30. E. Şahiner, G. Kitis, V. Pagonis, N. Meriç, G.S. Polymeris, Tunnelling recombination in conventional, post-infrared and post-infrared multi-elevated temperature IRSL signals in microcline K-feldspar. J. Lumin. 188, 514–523 (2017)

    Article  Google Scholar 

  31. Vasilis Pagonis, Nathan D. Brown, Jun Peng, George Kitis, George S. Polymeris, On the deconvolution of promptly measured luminescence signals in feldspars. J. Lumin. 239, 118334 (2021)

    Article  Google Scholar 

  32. V. Pagonis, C. Kulp, C. Chaney, M. Tachiya, Quantum tunneling recombination in a system of randomly distributed trapped electrons and positive ions. J. Phys.: Condens. Matter 29, 365701 (2017)

    Google Scholar 

  33. N.R.J. Poolton, K.B. Ozanyan, J. Wallinga, A.S. Murray, L. Bøtter-Jensen, Electrons in feldspar II: a consideration of the influence of conduction band-tail states on luminescence processes. Phys. Chem. Miner. 29(3), 217–225 (2002)

    Article  ADS  Google Scholar 

  34. N.R.J. Poolton, J. Wallinga, A.S. Murray, E. Bulur, L. Bøtter-Jensen, Electrons in feldspar I: on the wavefunction of electrons trapped at simple lattice defects. Phys. Chem. Miner. 29(3), 210–216 (2002). (April)

    Article  ADS  Google Scholar 

  35. Ioanna K. Sfampa, George S. Polymeris, Vasilis Pagonis, George Kitis, Correlation between isothermal TL and IRSL in K-Feldspars of various types. Radiat. Phys. Chem. 165, 108386 (2019)

    Article  Google Scholar 

  36. M. Jain, R. Sohbati, B. Guralnik, A.S. Murray, M. Kook, T. Lapp, A.K. Prasad, K.J. Thomsen, J.P. Buylaert, Kinetics of infrared stimulated luminescence from feldspars. Radiat. Meas. 81, 242–250 (2015)

    Article  Google Scholar 

  37. V. Pagonis, H. Phan, D. Ruth, G. Kitis, Further investigations of tunneling recombination processes in random distributions of defects. Radiat. Meas. 58, 66–74 (2013)

    Article  Google Scholar 

  38. G. Kitis, V. Pagonis, Properties of thermoluminescence glow curves from tunneling recombination processes in random distributions of defects. J. Lumin. 153, 118–124 (2014)

    Article  Google Scholar 

  39. G.S. Polymeris, V. Pagonis, G. Kitis, Thermoluminescence glow curves in preheated feldspar samples: an interpretation based on random defect distributions. Radiat. Meas. 97, 20–27 (2017)

    Article  Google Scholar 

  40. R.H. Biswas, F. Herman, G.E. King, J. Braun, Thermoluminescence of feldspar as a multi-thermochronometer to constrain the temporal variation of rock exhumation in the recent past. Earth Planet. Sci. Lett. 495, 56–68 (2018)

    Article  ADS  Google Scholar 

  41. R.H. Biswas, F. Herman, G.E. King, B. Lehmann, A.K. Singhvi, Surface paleothermometry using low-temperature thermoluminescence of feldspar. Clim. Past 16(6), 2075–2093 (2020)

    Article  Google Scholar 

  42. B. Guralnik, B. Li, M. Jain, R. Chen, R.B. Paris, A.S. Murray, S. Li, V. Pagonis, P.G. Valla, F. Herman, Radiation-induced growth and isothermal decay of infrared-stimulated luminescence from feldspar. Radiat. Meas. 81, 224–231 (2015)

    Article  Google Scholar 

  43. G.E. King, F. Herman, R. Lambert, P.G. Valla, B. Guralnik, Multi OSL thermochronometry of feldspar. Quat. Geochronol. 33, 76–87 (2016)

    Article  Google Scholar 

  44. G.E. King, B. Guralnik, P.G. Valla, F. Herman, Trapped-charge thermochronometry and thermometry: a status review. Chem. Geol. 44, 3–17 (2016)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vasilis Pagonis .

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pagonis, V. (2022). TL from Quantum Tunneling Processes: Models. In: Luminescence Signal Analysis Using Python. Springer, Cham. https://doi.org/10.1007/978-3-030-96798-7_4

Download citation

Publish with us

Policies and ethics