Skip to main content

TL from Delocalized Transitions: Models

  • Chapter
  • First Online:
Luminescence Signal Analysis Using Python
  • 473 Accesses

Abstract

In this chapter we introduce several models commonly used for analyzing thermoluminescence (TL) signals. We provide an overview and mathematical description of models based on delocalized transitions involving the conduction/valence bands in solids. We present Python codes for numerically integrating the simple one trap one recombination model (OTOR), as well as for integrating the equations for first order, second order and general order kinetics (FOK, SOK, GOK respectively). Python simulations are presented for the dose response of TL signals described using first and second order kinetics. We discuss in detail the general one trap (GOT) differential equation and its analytical Kitis-Vlachos (KV-TL) solution, which is based on the Lambert W function. We also present the more advanced models of Interactive Multi Trap System (IMTS) and Mixed Order Kinetics (MOK). Additional Python codes are demonstrated for the initial rise method and the method of various heating rates, which allow evaluation of both the activation energy and the frequency factor associated with a TL peak. The models in this chapter are used in the next chapter to fit experimental TL data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. G. Kitis, N.D. Vlachos, General semi-analytical expressions for TL, OSL and other luminescence stimulation modes derived from the OTOR model using the Lambert W-function. Radiat. Meas. 48, 47–54 (2013)

    Article  Google Scholar 

  2. R. Johansson, Numerical Python. Scientific Computing and Data Science Applications with Numpy, SciPy and Matplotlib (Apress, Berkeley, CA, 2019)

    Google Scholar 

  3. J.T. Randall, M.H.F. Wilkins, Phosphorescence and electron traps. I. The study of trap distributions, in Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, vol. 184(999), pp. 366–389 (1945)

    Google Scholar 

  4. R. Chen, V. Pagonis, Thermally and Optically Stimulated Luminescence: A Simulation Approach (Wiley, Chichester, 2011)

    Book  Google Scholar 

  5. V. Pagonis, G. Kitis, Prevalence of first-order kinetics in thermoluminescence materials: an explanation based on multiple competition processes. Physica Status Solidi B 249, 1590–1601 (2012)

    Article  ADS  Google Scholar 

  6. V. Pagonis, N. Brown, G.S. Polymeris, G. Kitis, Comprehensive analysis of thermoluminescence signals in Mg\(_4\)BO\(_7\): Dy, Na dosimeter. J. Lumin. 213, 334–342 (2019)

    Article  Google Scholar 

  7. G.F.J. Garlick, A.F. Gibson, The electron trap mechanism of luminescence in sulphide and silicate phosphors. Proc. Phys. Soc. 60, 574–590 (1948)

    Article  ADS  Google Scholar 

  8. C.M. Sunta, W.E.F. Ayta, J.F.D. Chubaci, S. Watanabe, A critical look at the kinetic models of thermoluminescence: I. first-order kinetics. J. Phys. D: Appl. Phys. 34(17), 2690–2698 (2001)

    Google Scholar 

  9. C.M. Sunta, W.E.F. Ayta, J.F.D. Chubaci, S. Watanabe, A critical look at the kinetic models of thermoluminescence II. non-first order kinetics. J. Phys. D: Appl. Phys. 38(1), 95–102 (2004)

    Google Scholar 

  10. R. Chen, S.W.S. McKeever, Theory of Thermoluminescence and Related Phenomena (World Scientific, Singapore, 1997)

    Book  Google Scholar 

  11. G. Kitis, G.S. Polymeris, I.K. Sfampa, M. Prokic, N. Meriç, V. Pagonis, Prompt isothermal decay of thermoluminescence in Mg\(_4\)BO\(_7\): Dy, Na and Li\(_4\)BO\(_7\):Cu, in dosimeters. Radiat. Meas. 84, 15–25 (2016)

    Article  Google Scholar 

  12. R. Chen, J.L. Lawless, V. Pagonis, On the various-heating-rates method for evaluating the activation energies of thermoluminescence peaks. Radiat. Meas. 150 (2022)

    Google Scholar 

  13. C.E. May, J.A. Partridge, Thermoluminescent kinetics of alpha-irradiated alkali halides. J. Chem. Phys. 40(5), 1401–1409 (1964)

    Google Scholar 

  14. M S Rasheedy. On the general-order kinetics of the thermoluminescence glow peak. J. Phys.: Condens. Matter 5, 633–636 (1993)

    Google Scholar 

  15. A. Halperin, A.A. Braner, Evaluation of thermal activation energies from glow curves. Phys. Rev. 117, 408–415 (1960)

    Google Scholar 

  16. R. Chen, Glow curves with general order kinetics. J. Electrochem. Soc. 116, 1254 (1969)

    Google Scholar 

  17. R. Chen, On the calculation of activation energies and frequency factors from glow curves. J. Appl. Phys. 40, 570–585 (1969)

    Google Scholar 

  18. L.L. Singh, R.K. Gartia, Theoretical derivation of a simplified form of the OTOR/GOT differential equation. Radiat. Meas. 59, 160–164 (2013)

    Google Scholar 

  19. R.M. Corless, G.H. Gonnet, D.G.E. Hare, D.J. Jerey, D.E. Knuth, On the Lambert W function. Adv. Comput. Math. 5, 329–359 (1996)

    Google Scholar 

  20. R.M. Corless, D.J. Jerey, D.E. Knuth, in Proceedings of the International Symposium on Symbolic and Algebraic Computation. A Sequence Series for the Lambert W Function (ISSAC, 1997), pp. 133–140

    Google Scholar 

  21. G. Kitis, G.S. Polymeris, V. Pagonis, Stimulated luminescence emission: from phenomenological models to master analytical equations. Appl. Radiat. Isotop. 153(2019)

    Google Scholar 

  22. R. Chen, N. Kristianpoller, Z. Davidson, R. Visocekas, Mixed first and second order kinetics in thermally stimulated processes. J. Lumin. 23, 293–303 (1981)

    Google Scholar 

  23. G. Kitis, C. Furetta, V. Pagonis, Mixed-order kinetics model for optically stimulated luminescence. Mod. Phys. Lett. B 23(27), 3191–3207 (2009)

    Google Scholar 

  24. J.M. Gómez-Ros, G. Kitis, Computerized glow-curve deconvolution using mixed and general order kinetics. Radiat. Prot. Dosim. 101, 47–52 (2002)

    Google Scholar 

  25. G. Kitis, J.M. Gómez-Ros, Glow curve deconvolution functions for mixed order kinetics and a continuous trap distribution. Nucl. Instrum. Methods A 440(440), 224–231 (1999)

    ADS  Google Scholar 

  26. D. Yossian, Y.S. Horowitz, Mixed-order and general-order kinetics applied to synthetic glow peaks and to peak 5 in LiF:Mg, Ti (TLD-100). Radiat. Meas. 27(3), 465–471 (1997)

    Google Scholar 

  27. V. Pagonis, G. Kitis, C. Furetta, Numerical and Practical Exercises in Thermoluminescence (Springer Science & Business Media, 2006)

    Google Scholar 

  28. S.W.S. McKeever, Thermoluminescence of Solids (Cambridge University Press, 1985)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vasilis Pagonis .

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pagonis, V. (2022). TL from Delocalized Transitions: Models. In: Luminescence Signal Analysis Using Python. Springer, Cham. https://doi.org/10.1007/978-3-030-96798-7_2

Download citation

Publish with us

Policies and ethics