Skip to main content

Construction Automation and Smart Buildings

  • Chapter
  • First Online:
Springer Handbook of Automation

Part of the book series: Springer Handbooks ((SHB))

  • 4210 Accesses

Abstract

The built environment has become more integrated in its delivery, from its planning and design to its construction and operation. Technology-enabled information sharing from the early stages of design has allowed construction automation to impact smart building operations. The construction industry is labor-intensive, project based, and slow to adopt emerging technologies. Combined, these factors make the construction industry not only dangerous but also prone to low productivity and cost overruns due to shortages of skilled labor, unexpected site conditions, design changes, communication problems, constructability challenges, and unsuitability of construction means and techniques. Automation emerged to overcome these issues, aiming to capitalize on the increasing quality expectations, tighter safety regulations, opportunities for real-time monitoring, technological breakthroughs, and to facilitate information exchanges between building design and operation. On the other hand, smart buildings emerged to respond to building energy, efficiency, longevity, comfort, and satisfaction. This chapter covers construction automation and smart buildings, describing important concepts for each but focusing on applications that integrate them through design intent, technology development, and information exchanges.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 309.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 399.00
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chen, Q., García de Soto, B., Adey, B.T.: Construction automation: research areas, industry concerns and suggestions for advancement. Autom. Constr. 94, 22–38 (2018)

    Google Scholar 

  2. Tucker, R.: High payoff areas for automation applications. In: Proceedings of the 5th International Symposium on Robotics in Construction, Tokyo 1988. Japan Industrial Robot Association, Tokyo (1988)

    Google Scholar 

  3. Hsiao, J.: A comparison of construction automation in major constraints and potential techniques for automation in the United States, Japan, and Taiwan. M.Sc. Thesis, MIT, Boston (1994)

    Google Scholar 

  4. Cousineau, L., Miura, N.: Construction Robots: The Search for New Building Technology in Japan. ASCE, Reston (1998)

    Google Scholar 

  5. Buckman, A.H., Mayfield, M., Beck, S.B.M.: What is a smart building? Smart Sustain. Built Environ. 3(2), 92–109 (2014)

    Google Scholar 

  6. Weng, T., Agarwal, Y.: From buildings to smart buildings—sensing and actuation to improve energy efficiency. IEEE Des. Test. Comput. 29(4), 36–44 (2012)

    Google Scholar 

  7. Jia, M., Komeily, A., Wang, Y., Srinivasan, R.S.: Adopting Internet of Things for the development of smart buildings: a review of enabling technologies and applications. Autom. Constr. 101, 111–126 (2019)

    Google Scholar 

  8. Cobb, D.: Integrating automation into construction to achieve performance enhancements. In: Proceedings of the CIB World Building Congress, Wellington 2001. International Council for Research and Innovation in Building and Construction, Rotterdam (2001)

    Google Scholar 

  9. Eastman, C., Teicholz, P., Sacks, R., Liston, K.: BIM Handbook: A Guide to Building Information Modeling for Owners, Managers, Designers, Engineers and Contractors. Wiley, Hoboken (2008)

    Google Scholar 

  10. Li, R.Y.M., Poon, S.W.: A literature review on the causes of construction accidents. In: Construction Safety. Risk Engineering. Springer, Berlin, Heidelberg (2013)

    Google Scholar 

  11. Bureau of Labor Statistics – BLS: National Census of Fatal Occupational Injuries in 2018. BLS, Washington, DC (2019). https://www.bls.gov/news.release/pdf/cfoi.pdf. Last accessed 10 Aug 2020

    Google Scholar 

  12. Abdelhamid, T.S., Everett, J.G.: Identifying root causes of construction accidents. ASCE J. Constr. Eng. Manag. 126(1), 52–60 (2000)

    Google Scholar 

  13. Ichniomski, T.: Construction fatalities up in 2018, fatality rate unchanged (Engineering News-Record, 2019-12-18). https://www.enr.com/articles/48383-construction-fatalities-up-in-2018-fatality-rate-unchanged. Last accessed 14 Aug 2020

  14. Li, Y., Liu, C.: Applications of multirotor drone technologies in construction management. Int. J. Constr. Manag. 19(5), 401–412 (2019)

    Google Scholar 

  15. Kim, S., Chang, S., Castro-Lacouture, D.: Dynamic modeling for analyzing impacts of skilled labor shortage on construction project management. ASCE J. Manag. Eng. 36(1), 04019035 (2020)

    Google Scholar 

  16. Lawrence, T.M., Boudreau, M.C., Helsen, L., Henze, G., Mohammadpour, J., Noonan, D., et al.: Ten questions concerning integrating smart buildings into the smart grid. Build. Environ. 108, 273–283 (2016)

    Google Scholar 

  17. Salsbury, T.I.: The smart building. In: Springer Handbook of Automation, pp. 1079–1093. Springer, Berlin, Heidelberg (2009)

    Google Scholar 

  18. Schraft, R.D., Schmierer, G.: Service Robots: Products, Scenarios, Visions. A.K. Peters, Natick (2000)

    Google Scholar 

  19. Castro-Lacouture, D., Bryson, L.S., Maynard, C., Williams, R.L., Bosscher, P.: Concrete paving productivity improvement using a multi-task autonomous robot. In: Proceedings of the 24th International Symposium on Automation and Robotics in Construction, Cochi 2007. Indian Institute of Technology, Madras (2007)

    Google Scholar 

  20. Peyret, F., Jurasz, J., Carrel, A., Zekri, E., Gorham, B.: The computer integrated road construction project. Autom. Constr. 9, 447–461 (2000)

    Google Scholar 

  21. Zhu, S., Li, X., Wang, H., Yu, D.: Development of an automated remote asphalt paving quality control system. Transp. Res. Rec. 2672(26), 28–39 (2018)

    Google Scholar 

  22. Groll, T., Hemer, S., Ropertz, T., Berns, K.: Autonomous trenching with hierarchically organized primitives. Autom. Constr. 98, 214–224 (2019)

    Google Scholar 

  23. Khan, N., Ali, A.K., Skibniewski, M.J., Lee, D.Y., Park, C.: Excavation safety modeling approach using BIM and VPL. Adv. Civ. Eng. 2019 (2019). https://doi.org/10.1155/2019/1515808

  24. Handa, M., Hasegawa, Y., Matsuda, H., Tamaki, K., Kojima, S., Matsueda, K., Takakuwa, T., Onoda, T.: Development of interior finishing unit assembly system with robot: WASCOR IV research project report. Autom. Constr. 5(1), 31–38 (1996)

    Google Scholar 

  25. Miyakawa, H., Ochiai, J., Oohata, K., Shiokawa, T.: Application of automated building construction system for high-rise office building. (2000, September). In: Proceedings of the 17th International Symposium on Robotics Construction, Taipei. National Taiwan University, Taipei (2000)

    Google Scholar 

  26. Warszawski, A., Rosenfeld, Y.: Robot for interior-finishing works in building: feasibility analysis. ASCE J. Constr. Eng. Manag. 120(1), 132–151 (1994)

    Google Scholar 

  27. Shapira, A., Bank, L.C.: Constructability and economics of FRP reinforcement cages for concrete beams. ASCE J. Comp. Constr. 1(3), 82–89 (1997)

    Google Scholar 

  28. Dolinšek, B., Duhovnik, J.: Robotic assembly of rebar cages for beams and columns. Autom. Constr. 8(2), 195–207 (1998)

    Google Scholar 

  29. Leyh, W.: Experiences with the construction of a building assembly robot. Autom. Constr. 4(1), 45–60 (1995)

    Google Scholar 

  30. Navon, R.: Automated quality assurance for a floor-tiling robot. Robotics. 2000, 320–327 (2000)

    Google Scholar 

  31. Pritschow, G., Dalacker, M., Kurz, J., Gaenssle, M.: Technological aspects in the development of a mobile bricklaying robot. Autom. Constr. 5(1), 3–13 (1996)

    Google Scholar 

  32. Bock, T., Stricker, D., Fliedner, J., Huynh, T.: Automatic generation of the controlling-system for a wall construction robot. Autom. Constr. 5(1), 15–21 (1996)

    Google Scholar 

  33. Heintze, J., Teerhuis, P.C., Weiden, A.J.J.V.D.: Controlled hydraulics for a direct drive brick laying robot. Autom. Constr. 5(1), 23–29 (1996)

    Google Scholar 

  34. Lytle, A.M., Saidi, K.S., Bostelman, R.V., Stone, W.C., Scott, N.A.: Adapting a teleoperated device for autonomous control using three-dimensional positioning sensors: experiences with the NIST RoboCrane. Autom. Constr. 13(1), 101–118 (2004)

    Google Scholar 

  35. Balaguer, C., Gimenez, A., Jardon, A.: Climbing robots’ mobility for inspection and maintenance of 3D complex environments. Auton. Robot. 18, 157–169 (2005)

    Google Scholar 

  36. Khoshnevis, B.: Automated construction by contour crafting—related robotics and information technologies. Autom. Constr. 13(1), 5–19 (2004)

    Google Scholar 

  37. Bosscher, P., Williams, R., Bryson, L., Castro-Lacouture, D.: Cable-suspended robotic contour crafting system. Autom. Constr. 17(1), 45–55 (2007)

    Google Scholar 

  38. Buswell, R.A., Soar, R.C., Gibb, A.G., Thorpe, A.: Freeform construction: mega-scale rapid manufacturing for construction. Autom. Constr. 16(2), 224–231 (2007)

    Google Scholar 

  39. Hack, N., Lauer, W.V.: Mesh-Mould: robotically fabricated spatial meshes as reinforced concrete formwork. Arch. Des. 84(3), 44–53 (2014)

    Google Scholar 

  40. Duballet, R., Baverel, O., Dirrenberger, J.: Classification of building systems for concrete 3D printing. Autom. Constr. 83, 247–258 (2017)

    Google Scholar 

  41. De Schutter, G., Lesage, K., Mechtcherine, V., Nerella, V.N., Habert, G., Agusti-Juan, I.: Vision of 3D printing with concrete—technical, economic and environmental potentials. Cem. Concr. Res. 112, 25–36 (2018)

    Google Scholar 

  42. Yang, E., Bayapu, I.: Big Data analytics and facilities management: a case study. Facilities. 38(3/4), 268–281 (2019)

    Google Scholar 

  43. Afsari, K., Eastman, C.M., Castro-Lacouture, D.: JavaScript Object Notation (JSON) data serialization for IFC schema in web-based BIM data exchange. Autom. Constr. 77, 24–51 (2017)

    Google Scholar 

  44. Elghaish, F., Abrishami, S., Hosseini, M.R., Abu-Samra, S., Gaterell, M.: Integrated project delivery with BIM: an automated EVM-based approach. Autom. Constr. 106, 102907 (2019)

    Google Scholar 

  45. Kim, H., Benghi, C., Dawood, N., Jung, D., Kim, J., Baek, Y.: Developing 5D system connecting cost, schedule and 3D model. In: Proceedings of the 10th International Conference on Construction Applications of Virtual Reality, CONVR2010, Miyagi University, Sendai (2010)

    Google Scholar 

  46. Lu, W., Huang, G.Q., Li, H.: Scenarios for applying RFID technology in construction project management. Autom. Constr. 20(2), 101–106 (2011)

    Google Scholar 

  47. Caldas, C., Grau, D., Haas, C.: Using global positioning systems to improve materials locating processes on industrial projects. ASCE J. Constr. Eng. Manag. 132(7), 741–749 (2004)

    Google Scholar 

  48. Böhms, M., Lima, C., Storer, G., Wix, J.: Framework for future construction ICT. Int. J. Des. Sci. Technol. 11(2), 153–162 (2004)

    Google Scholar 

  49. Castro-Lacouture, D., Bryson, L.S., Gonzalez-Joaqui, J.: Real-time positioning network for intelligent construction. In: Proceedings of the International Conference on Computing and Decision Making in Civil and Building Engineering, Montreal 2006. International Society for Computing in Civil and Building Engineering, Montreal (2006)

    Google Scholar 

  50. Kim, C., Kim, B., Kim, H.: 4D CAD model updating using image processing-based construction progress monitoring. Autom. Constr. 35, 44–52 (2013)

    Google Scholar 

  51. Kanan, R., Elhassan, O., Bensalem, R.: An IoT-based autonomous system for workers’ safety in construction sites with real-time alarming, monitoring, and positioning strategies. Autom. Constr. 88, 73–86 (2018)

    Google Scholar 

  52. Hu, Y., Castro-Lacouture, D., Eastman, C.M.: Holistic clash detection improvement using a component dependent network in BIM projects. Autom. Constr. 105, 102832 (2019)

    Google Scholar 

  53. Chang, S., Castro-Lacouture, D., Yamagata, Y.: Estimating building electricity performance gaps with Internet of Things data using Bayesian multilevel additive modeling. ASCE J. Constr. Eng. Manag. 146(12), 05020017 (2020)

    Google Scholar 

  54. Cheng, J.C., Chen, W., Chen, K., Wang, Q.: Data-driven predictive maintenance planning framework for MEP components based on BIM and IoT using machine learning algorithms. Autom. Constr. 112, 103087 (2020)

    Google Scholar 

  55. Zheng, Z., Zhang, Z., Pan, W.: Virtual prototyping-and transfer learning-enabled module detection for modular integrated construction. Autom. Constr. 120, 103387 (2020)

    Google Scholar 

  56. Du, J., Jing, H., Castro-Lacouture, D., Sugumaran, V.: Multi-agent simulation for managing design changes in prefabricated construction projects. Eng. Constr. Archit. Manag. 27(1), 270–295 (2019)

    Google Scholar 

  57. Mechtcherine, V., Nerella, V.N., Will, F., Näther, M., Otto, J., Krause, M.: Large-scale digital concrete construction–CONPrint3D concept for on-site, monolithic 3D-printing. Autom. Constr. 107, 10293 (2019)

    Google Scholar 

  58. Berman, B.: 3-D printing: the new industrial revolution. Bus. Horiz. 55(2), 155–162 (2012)

    Google Scholar 

  59. Wu, P., Wang, J., Wang, X.: A critical review of the use of 3-D printing in the construction industry. Autom. Constr. 68, 21–31 (2016)

    Google Scholar 

  60. Hack, N., Dörfler, K., Walzer, A.N., Wangler, T., Mata-Falcón, J., Kumar, N., Buchli, J., Kaufmann, W., Flatt, R.J., Gramazio, F., Kohler, M.: Structural stay-in-place formwork for robotic in situ fabrication of non-standard concrete structures: a real scale architectural demonstrator. Autom. Constr. 115, 103197 (2020)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Castro-Lacouture .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Castro-Lacouture, D. (2023). Construction Automation and Smart Buildings. In: Nof, S.Y. (eds) Springer Handbook of Automation. Springer Handbooks. Springer, Cham. https://doi.org/10.1007/978-3-030-96729-1_48

Download citation

Publish with us

Policies and ethics