Skip to main content

A 2D Kinetic Model for Crowd Dynamics with Disease Contagion

  • Chapter
  • First Online:
Predicting Pandemics in a Globally Connected World, Volume 1

Abstract

We focus on the modeling and simulation of an infectious disease spreading in a medium size population occupying a confined environment, such as an airport terminal, for short periods of time. Because of the size of the crowd and venue, we opt for a kinetic type model. The chapter is divided into two parts. In the first part, we adopt the simplifying assumption that people’s walking speed and direction are given. The resulting kinetic model features a variable that denotes the level of exposure to people spreading the disease, a parameter describing the contagion interaction strength, and a kernel function that is a decreasing function of the distance between a person and a spreading individual. Such model is tested on problems involving a small crowd in a square walkable domain. In the second part, ideas from the simplified model are used to incorporate disease spreading in a kinetic theory approach for crowd dynamics, i.e., the walking speed and direction result from interaction with other people and the venue.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. J.P. Agnelli, F. Colasuonno, D. Knopoff, A kinetic theory approach to the dynamics of crowd evacuation from bounded domains. Math. Models Methods Appl. Sci. 25(01), 109–129 (2015)

    Article  MathSciNet  Google Scholar 

  2. V.V. Aristov, Biological systems as nonequilibrium structures described by kinetic methods. Results Phys. 13, 102232 (2019)

    Article  Google Scholar 

  3. M. Asano, T Iryo, M. Kuwahara, Microscopic pedestrian simulation model combined with a tactical model for route choice behaviour. Transp. Res. C Emerg. Technol. 18(6), 842–855 (2010)

    Google Scholar 

  4. B. Aylaj, N. Bellomo, L. Gibelli, A. Reali, A unified multiscale vision of behavioral crowds. Math. Models Methods Appl. Sci. 30(1), 1–22 (2020)

    Article  MathSciNet  Google Scholar 

  5. N. Bellomo, A. Bellouquid, On the modeling of crowd dynamics: looking at the beautiful shapes of swarms. Netw. Heterogeneous Media 6(3), 383–399 (2011)

    Article  MathSciNet  Google Scholar 

  6. N. Bellomo, L. Gibelli, Toward a mathematical theory of behavioral-social dynamics for pedestrian crowds. Math. Models Methods Appl. Sci. 25(13), 2417–2437 (2015)

    Article  MathSciNet  Google Scholar 

  7. N. Bellomo, L. Gibelli, Behavioral crowds: modeling and Monte Carlo simulations toward validation. Comput. Fluids 141, 13–21 (2016)

    Article  MathSciNet  Google Scholar 

  8. N. Bellomo, A. Bellouquid, D. Knopoff, From the microscale to collective crowd dynamics. SIAM Multiscale Model. Simul. 11(3), 943–963 (2013)

    Article  MathSciNet  Google Scholar 

  9. N. Bellomo, A. Bellouquid, L. Gibelli, N Outada, A quest towards a mathematical theory of living systems, in Modeling and Simulation in Science, Engineering and Technology (Birkhäuser, Basel, 2017)

    Google Scholar 

  10. N. Bellomo, L. Gibelli, N. Outada, On the interplay between behavioral dynamics and social interactions in human crowds. Kinet. Relat. Models 12(2), 397–409 (2019)

    Article  MathSciNet  Google Scholar 

  11. N. Bellomo, R. Bingham, M.K. Chaplain, G. Dosi, G. Forni, D.A. Knopoff, J. Lowengrub, R. Twarock, M.E. Virgillito, A multiscale model of virus pandemic: heterogeneous interactive entities in a globally connected world. Math. Models Methods Appl. Sci. 30(8), 1591–1651 (2020)

    Article  MathSciNet  Google Scholar 

  12. N. Bellomo, D. Burini, G. Dosi, L. Gibelli, D.A. Knopoff, N. Outada, P. Terna, M.E. Virgillito, What is life? A perspective of the mathematical kinetic theory of active particles. Math. Models Methods Appl. Sci. 31(9), 1821–1866 (2021)

    MATH  Google Scholar 

  13. A.L. Bertozzi, J. Rosado, M.B. Short, L. Wang, Contagion shocks in one dimension. J. Stat. Phys. 158, 647–664 (2015)

    Article  MathSciNet  Google Scholar 

  14. P. Billingsley, Convergence of Probability Measures (Wiley, Hoboken, 1999)

    Book  Google Scholar 

  15. W. Boscheri, G. Dimarco, L. Pareschi, Modeling and simulating the spatial spread of an epidemic through multiscale kinetic transport equations. Math. Models Methods Appl. Sci. 31, 1–39 (2021)

    Article  MathSciNet  Google Scholar 

  16. M. Chraibi, A. Tordeux, A. Schadschneider, A. Seyfried, Modelling of Pedestrian and Evacuation Dynamics (Springer, New York, 2019), pp. 649–669

    Google Scholar 

  17. E. Cristiani, B. Piccoli, A. Tosin, Multiscale Modeling of Pedestrian Dynamics (Springer, Cham, 2014)

    Book  Google Scholar 

  18. J. Dai, X. Li, L. Liu, Simulation of pedestrian counter flow through bottlenecks by using an agent-based model. Phys. A Stat. Mech. Appl. 392(9), 2202–2211 (2013)

    Article  MathSciNet  Google Scholar 

  19. P. Derjany, S. Namilae, D. Liu, A. Srinivasan, Multiscale model for the optimal design of pedestrian queues to mitigate infectious disease spread. PLOS ONE 15, 1–21 (2020)

    Article  Google Scholar 

  20. F. Flandoli, E. La Fauci, M. Riva, Individual-based Markov model of virus diffusion: comparison with Covid-19 incubation period, serial interval and regional time series. Math. Models Methods Appl. Sci. 31, 907–939 (2021)

    Article  MathSciNet  Google Scholar 

  21. M. Gatto, E. Bertuzzo, L. Mari, S. Miccoli, L. Carraro, R. Casagrandi, A. Rinaldo, Spread and dynamics of the covid-19 epidemic in Italy: effects of emergency containment measures. Proc. Natl. Acad. Sci. 117(19), 10484–10491 (2020)

    Article  Google Scholar 

  22. R. Glowinski, Finite element methods for incompressible viscous flow, in Handbook of Numerical Analysis, ed. by P.G. Ciarlet, J.L. Lions, vol. 9 (North-Holland, Amsterdam, 2003)

    Google Scholar 

  23. T. Harweg, D. Bachmann, F. Weichert, Agent-based simulation of pedestrian dynamics for exposure time estimation in epidemic risk assessment. J Public Health (Berl.) (2021). https://doi.org/10.1007/s10389-021-01489-y

  24. D. Helbing, P. Molnár, Social force model for pedestrian dynamics. Phys. Rev. E 51, 4282–4286 (1998)

    Article  Google Scholar 

  25. H.W. Hethcote, The mathematics of infectious diseases. SIAM Rev. 42(4), 599–653 (2000)

    Article  MathSciNet  Google Scholar 

  26. R.L. Hughes, The flow of human crowds. Annu. Rev. Fluid Mech. 35(1), 169–182 (2003)

    Article  MathSciNet  Google Scholar 

  27. D. Kim, A. Quaini, A kinetic theory approach to model pedestrian dynamics in bounded domains with obstacles. Kinet. Relat. Models 12(6), 1273–1296 (2019)

    Article  MathSciNet  Google Scholar 

  28. D. Kim, A. Quaini, Coupling kinetic theory approaches for pedestrian dynamics and disease contagion in a confined environment. Math. Models Methods Appl. Sci. 30(10), 1893–1915 (2020)

    Article  MathSciNet  Google Scholar 

  29. D. Kim, A. Quaini, A kinetic theory approach to model crowd dynamics with disease contagion (2021). arXiv:2103.15151

    Google Scholar 

  30. D. Kim, K. O’Connell, W. Ott, A. Quaini, A kinetic theory approach for 2D crowd dynamics with emotional contagion. Math. Models Methods Appl. Sci. 31(06), 1–26 (2021). https://arxiv.org/abs/2012.08108

    MathSciNet  MATH  Google Scholar 

  31. S.C. Mpeshe, N. Nyerere, Modeling the dynamics of coronavirus disease pandemic coupled with fear epidemics. Computat. Math. Methods Med. 2021, 6647425 (2021)

    Google Scholar 

  32. K. Rathinakumar, A. Quaini, A microscopic approach to study the onset of a highly infectious disease spreading. Math. Biosci. 329, 108475 (2020)

    Article  MathSciNet  Google Scholar 

  33. A. Schadschneider, A. Seyfried, Empirical results for pedestrian dynamics and their implications for modeling. Netw. Heterogeneous Media 6(3), 545–560 (2011)

    Article  MathSciNet  Google Scholar 

  34. A. Shende, M.P. Singh, P. Kachroo, Optimization-based feedback control for pedestrian evacuation from an exit corridor. IEEE Trans. Intell. Transp. Syst. 12(4), 1167–1176 (2011)

    Article  Google Scholar 

  35. A.U.K Wagoum, A. Tordeux, W. Liao, Understanding human queuing behaviour at exits: an empirical study. R. Soc. Open Sci. 4(1), 160896 (2017)

    Google Scholar 

  36. L. Wang, M.B. Short, A.L. Bertozzi, Efficient numerical methods for multiscale crowd dynamics with emotional contagion. Math. Models Methods Appl. Sci. 27(1), 205–230 (2017)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work has been partially supported by NSF through grant DMS-1620384.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Annalisa Quaini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kim, D., Quaini, A. (2022). A 2D Kinetic Model for Crowd Dynamics with Disease Contagion. In: Bellomo, N., Chaplain, M.A.J. (eds) Predicting Pandemics in a Globally Connected World, Volume 1. Modeling and Simulation in Science, Engineering and Technology. Birkhäuser, Cham. https://doi.org/10.1007/978-3-030-96562-4_9

Download citation

Publish with us

Policies and ethics