Skip to main content

A Novel Point Process Model for COVID-19: Multivariate Recursive Hawkes Process

  • Chapter
  • First Online:
Predicting Pandemics in a Globally Connected World, Volume 1

Abstract

This chapter presents a novel point process model for COVID-19 transmission—the multivariate recursive Hawkes process, which is an extension of the recursive Hawkes model to the multivariate case. Equivalently the model can be viewed as an extension of the multivariate Hawkes model to allow for varying productivity as in the recursive model. Several theoretical properties of this process are stated and proved, including the existence of the multivariate recursive counting process and formulas for the mean and variance. EM-based algorithms are explored for estimating parameters of parametric and semi-parametric forms of the model. Additionally, an algorithm is presented to reconstruct the process from imprecise event times. The performance of the algorithms on both synthetic and real COVID-19 data sets is illustrated through several experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://github.com/wispcarey/Bohan_MRHP.

References

  1. H. Akima, A new method of interpolation and smooth curve fitting based on local procedures. J. ACM 17(4), 589–602 (1970)

    Article  MATH  Google Scholar 

  2. H. Akima, A method of bivariate interpolation and smooth surface fitting for irregularly distributed data points. ACM Trans. Math. Softw. 4(2), 148–159 (1978)

    Article  MATH  Google Scholar 

  3. A.L. Bertozzi, E. Franco, G. Mohler, M.B. Short, D. Sledge, The challenges of modeling and forecasting the spread of COVID-19. Proc. Natl. Acad. Sci. 117(29), 16732–16738 (2020)

    Article  MathSciNet  Google Scholar 

  4. T. Björk, An introduction to point processes from a martingale point of view. Lecture note, KTH, 2011

    Google Scholar 

  5. California covid-19 data. https://covid19.ca.gov/state-dashboard/

  6. S. Cauchemez, P. Nouvellet, A. Cori, T. Jombart, T. Garske, H. Clapham et al., Unraveling the drivers of MERS-CoV transmission. Proc. Natl. Acad. Sci. 113(32), 9081–9086 (2016)

    Article  Google Scholar 

  7. Z. Chen, A. Dassios, V. Kuan, J.W. Lim, Y. Qu, B. Surya, H. Zhao, A two-phase dynamic contagion model for COVID-19. Results Phys. 26, 104264 (2021)

    Article  Google Scholar 

  8. W.H. Chiang, X. Liu, G. Mohler, Hawkes process modeling of COVID-19 with mobility leading indicators and spatial covariates. Int. J. Forecast. 38(2), 505–520 (2022)

    Article  Google Scholar 

  9. D.J. Daley, D. Vere-Jones, An Introduction to the Theory of Point Processes: Volume I: Elementary Theory and Methods (Springer, New York, 2003)

    MATH  Google Scholar 

  10. A. Dassios, H. Zhao, A dynamic contagion process. Adv. Appl. Probab. 43(3), 814–846 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  11. S. Delattre, N. Fournier, M. Hoffmann, Hawkes processes on large networks. Ann. Appl. Probab. 26(1), 216–261 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  12. P. Diggle, B. Rowlingson, T.L. Su, Point process methodology for on-line spatio-temporal disease surveillance. Environ. Off. J. Int. Environmetrics Soc. 16(5), 423–434 (2005)

    MathSciNet  Google Scholar 

  13. E.W. Fox, M.B. Short, F.P. Schoenberg, K.D. Coronges, A.L. Bertozzi, Modeling e-mail networks and inferring leadership using self-exciting point processes. J. Am. Stat. Assoc. 111(514), 564–584 (2016)

    Article  MathSciNet  Google Scholar 

  14. E.W. Fox, F.P. Schoenberg, J.S. Gordon, Spatially. inhomogeneous background rate estimators and uncertainty quantification for nonparametric Hawkes point process models of earthquake occurrences. Ann. Appl. Stat. 10(3), 1725–1756 (2016)

    Google Scholar 

  15. G.H. Hardy, J.E. Littlewood, G. PĂłlya, Inequalities (Cambridge University Press, Cambridge, 1952)

    MATH  Google Scholar 

  16. A.G. Hawkes, Spectra of some self-exciting and mutually exciting point processes. Biometrika 58(1), 83–90 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  17. A.G. Hawkes, D. Oakes, A cluster process representation of a self-exciting process. J. Appl. Probab. 11(3), 493–503 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  18. A. Kaplan, J. Park, F.P. Schoenberg, Nonparametric estimation of recursive point processes with application to mumps in Pennsylvania (2020)

    Google Scholar 

  19. M. Kim, D. Paini, R. Jurdak, Modeling stochastic processes in disease spread across a heterogeneous social system. Proc. Natl. Acad. Sci. 116(2), 401–406 (2019)

    Article  Google Scholar 

  20. L. Lesage, A Hawkes process to make aware people of the severity of COVID-19 outbreak: application to cases in France. Doctoral dissertation, Université de Lorraine; University of Luxembourg, 2020

    Google Scholar 

  21. T.J. Liniger, Multivariate Hawkes processes. Doctoral dissertation, ETH Zurich, 2009

    Google Scholar 

  22. J.O. Lloyd-Smith, S. Funk, A.R. McLean, S. Riley, J.L. Wood, Nine challenges in modelling the emergence of novel pathogens. Epidemics 10, 35–39 (2015)

    Article  Google Scholar 

  23. D. Marsan, O. Lengline, Extending earthquakes’ reach through cascading. Science 319(5866), 1076–1079 (2008)

    Article  Google Scholar 

  24. S. Meyer, L. Held, Power-law models for infectious disease spread. Ann. Appl. Stat. 8(3), 1612–1639 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  25. Y. Ogata, Space-time point-process models for earthquake occurrences. Ann. Inst. Stat. Math. 50(2), 379–402 (1998)

    Article  MATH  Google Scholar 

  26. A. Reinhart, A review of self-exciting spatio-temporal point processes and their applications. Stat. Sci. 33(3), 299–318 (2018)

    MathSciNet  MATH  Google Scholar 

  27. F.P. Schoenberg, A note on the consistent estimation of spatial-temporal point process parameters. Stat. Sinica 26, 861–879 (2016)

    MathSciNet  MATH  Google Scholar 

  28. F.P. Schoenberg, M. Hoffmann, R.J. Harrigan, A recursive point process model for infectious diseases. Ann. Inst. Stat. Math. 71(5), 1271–1287 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  29. H.J.T. Unwin, I. Routledge, S. Flaxman, M.A. Rizoiu, S. Lai, J. Cohen et al., Using Hawkes processes to model imported and local malaria cases in near-elimination settings. PLoS Comput. Biol. 17(4), e1008830 (2021)

    Google Scholar 

  30. A. Veen, F.P. Schoenberg, Estimation of space–time branching process models in seismology using an EM-type algorithm. J. Am. Stat. Assoc. 103(482), 614–624 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  31. H. Xu, M. Farajtabar, H. Zha, Learning Granger causality for Hawkes processes, in International Conference on Machine Learning. PMLR, June 2016, pp. 1717–1726

    Google Scholar 

  32. A.S. Yang, Modeling the transmission dynamics of pertussis using recursive point process and SEIR model. Doctoral dissertation, UCLA, 2019

    Google Scholar 

  33. B. Yuan, H. Li, A.L. Bertozzi, P.J. Brantingham, M.A. Porter, Multivariate spatiotemporal Hawkes processes and network reconstruction. SIAM J. Math. Data Sci. 1(2), 356–382 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  34. J. Zhuang, Weighted likelihood estimators for point processes. Spat. Stat. 14, 166–178 (2015)

    Article  MathSciNet  Google Scholar 

  35. J. Zhuang, Y. Ogata, D. Vere-Jones, Analyzing earthquake clustering features by using stochastic reconstruction. J. Geophys. Res. Solid Earth 109(B5) (2004). https://doi.org/10.1029/2003JB002879

Download references

Acknowledgment

This work is supported by NSF grants DMS-2027277, DMS-1737770, DMS-2124313, and DMS-2027438 and Simons Foundation Math +  X Investigator Award # 510776.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea L. Bertozzi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chen, B., Shrestha, P., Bertozzi, A.L., Mohler, G., Schoenberg, F. (2022). A Novel Point Process Model for COVID-19: Multivariate Recursive Hawkes Process. In: Bellomo, N., Chaplain, M.A.J. (eds) Predicting Pandemics in a Globally Connected World, Volume 1. Modeling and Simulation in Science, Engineering and Technology. Birkhäuser, Cham. https://doi.org/10.1007/978-3-030-96562-4_5

Download citation

Publish with us

Policies and ethics