Skip to main content

Therapeutic Potential of Seleno-Compounds in Cancer—An Overview

  • Conference paper
  • First Online:
Advances in Chemical, Bio and Environmental Engineering (CHEMBIOEN 2021)

Part of the book series: Environmental Science and Engineering ((ESE))

  • 1023 Accesses

Abstract

Researchers are looking for natural agents to tackle high-prevalence cancer cases, for this Selenium (Se) becoming a promising contender because it inhibits the growth of the tumor. Selenium (Se) is a well-known necessary trace component that has been propagated (spread and promote) by non-metallic. Selenium (Se) as a cancer therapeutic agent a report was documented 100 years ago after that another research claimed that selenium (Se) is a carcinogen and an early study claiming that selenium (Se) played role in the prevention of cancer. As an outcome, this remarkable oxygen family member has a wide range of health impacts, including acting as a cancer preventive agent, also act as a toxin and a carcinogen. Numerous clinical trials showed no important significant benefit of selenium (Se) in tumor suppression, the scientists have found that only a few species of selenium (Se) have significant anticancer activities. By suppressing metastasis organic selenium (Se) compounds aid in the treatment of cancer but in comparison with inorganic compounds, they have several disadvantages. The scientists are working on the challenge to improve the Selenium efficacy with toxicity effect. For this nanotechnology has become a solution. The nanoparticle of selenium (SeNPs) is used against various malignant diseases as curative agents. In this review paper, selenium species categorize into three types (Se nanoparticles, organic and inorganic) and an outline of their function in the curing of cancer. To give reliable information on selenium capabilities in the treatment of tumors so it is necessary to review the state of selenium and selenium compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ali W, Álvarez-Pérez M, Marć MA, Salardón-Jiménez N, Handzlik J, Domínguez-Álvarez E (2018) The anticancer and chemopreventive activity of selenocyanate-containing compounds. Curr Pharmacol Rep 4(6):468–481

    Google Scholar 

  • Berzelius JJ (1817) Sur deux métaux nouveaux (litium et sélénium). Schweigger J 2:1818–1823

    Google Scholar 

  • Bhattacharya A (2011) Methylselenocysteine: a promising antiangiogenic agent for overcoming drug delivery barriers in solid malignancies for therapeutic synergy with anticancer drugs. Expert Opin Drug Delivery 8(6):749–763

    Google Scholar 

  • Bilek O, Fohlerova Z, Hubalek J (2019) Enhanced antibacterial and anticancer properties of Se-NPs decorated TiO2 nanotube film. PLoS ONE 14(3)

    Google Scholar 

  • Brodin O, Hackler J, Misra S, Wendt S, Sun Q, Laaf E, Stoppe C, Björnstedt M, Schomburg L (2020) Selenoprotein P as a biomarker of selenium status in clinical trials with therapeutic dosages of selenite. Nutrients 12(4):1067

    Article  CAS  Google Scholar 

  • Brozmanova J, Manikova D, Vlckova V, Chovanec M (2010) Selenium: a double-edged sword for defense and offense in cancer. Arch Toxicol 84:919–938

    Article  CAS  Google Scholar 

  • Burk RF, Norsworthy BK, Hill KE, Motley AK, Byrne DW (2006) Effects of chemical form of selenium on plasma biomarkers in a high-dose human supplementation trial. Cancer Epidemiol Biomark Prev 15(4):804–810

    Article  CAS  Google Scholar 

  • Cao S, Durrani FA, Rustum YM (2004) Selective modulation of the therapeutic efficacy of anticancer drugs by selenium-containing compounds against human tumor xenografts. Clin Cancer Res 10(7):2561–2569

    Google Scholar 

  • Cavalu S, Laslo V, Banica F, Vicas SI (2016) Naturally derived matrix for controlled selenium nanoparticles delivery. Key Eng Mater 695:284–288. https://doi.org/10.4028/www.scientific.net/KEM

    Article  Google Scholar 

  • Çetin ES, Nazıroğlu M, Çiğ B, Övey İS, Koşar PA (2016) Selenium potentiates the anticancer effect of cisplatin against oxidative stress and calcium ion signalling-induced intracellular toxicity in MCF-7 breast cancer cells: involvement of the TRPV1 channel. J Recept Signal Transduct 37(1):84–93

    Google Scholar 

  • Chakraborty M, Mitra MK, Chakraborty J (2017) One-pot synthesis of CaAl-layered double hydroxide–methotrexate nanohybrid for anticancer application. Bull Mater Sci 40(6):1203–1211

    Article  CAS  Google Scholar 

  • Chen T (2012) Surface decoration by spirulina polysaccharide enhances the cellular uptake and anticancer efficacy of selenium nanoparticles. Int J Nanomed. https://doi.org/10.2147/IJN.S28278

  • Chen T, Wong YS, Zheng W, Bai Y, Huang L (2008) Selenium nanoparticles fabricated in Undaria pinnatifida polysaccharide solutions induce mitochondria-mediated apoptosis in A375 human melanoma cells. Colloids Surf B Biointerfaces 67:2631. https://doi.org/10.1016/j.colsurfb.2008.07.010

    Article  CAS  Google Scholar 

  • Combs GF Jr, Clark LC, Turnbull BW (1997) Reduction of cancer mortality and incidence by selenium supplementation. Med Klin (munich) 92(Suppl 3):42–45

    Article  CAS  Google Scholar 

  • Cui D, Ma J, Liang T, Sun L, Meng L, Liang T, Li Q (2019) Selenium nanoparticles fabricated in laminarin polysaccharides solutions exert their cytotoxicities in HepG2 cells by inhibiting autophagy and promoting apoptosis. Int J Biol Macromol. https://doi.org/10.1016/j.ijbiomac.2019.07.031

  • Domínguez-Álvarez E, Plano D, Font M, Calvo A, Prior C, Jacob C, Palop JA, Sanmartín C (2014) Synthesis and antiproliferative activity of novel selenoester derivatives. Eur J Med Chem 12(73):153–166

    Article  Google Scholar 

  • El-Sayed WM, Aboul-Fadl T, Lamb JG, Roberts JC, Franklin MR (2016) Effect of selenium-containing compounds on hepatic chemoprotective enzymes in mice. Toxicology 220(2–3):179–188

    Google Scholar 

  • Ertilav K, Nazıroğlu M, Ataizi ZS, Braidy N (2019) Selenium enhances the apoptotic efficacy of docetaxel through activation of TRPM2 channel in DBTRG glioblastoma cells. Neurotox Res. https://doi.org/10.1007/s12640-019-0009-5

  • Frieben E, Amin S, Sharma AK (2019) Development of isoselenocyanate compounds’ syntheses and biological applications. J Med Chem. https://doi.org/10.1021/acs.jmedchem.8b01698

    Article  PubMed  Google Scholar 

  • Fu X, Yang Y, Li X, Lai H, Huang Y, He L, Zheng W, Chen T (2016) RGD peptide-conjugated selenium nanoparticles: antiangiogenesis by suppressing VEGF-VEGFR2-ERK/AKT pathway. Nanomed Nanotechnol Biol Med 12:1627–1639

    Google Scholar 

  • Ganesan V (2015) Biogenic synthesis and characterization of selenium nanoparticles using the flower of Bougainvillea spectabilis willd. Int J Sci Res (IJSR) 4:690–695

    Article  Google Scholar 

  • Gangadoo S, Stanley D, Hughes RJ, Moore RJ, Chapman J (2017) The synthesis and characterization of highly stable and reproducible selenium nanoparticles. Inorg Nano-Met Chem

    Google Scholar 

  • Gao F, Yuan Q, Gao L, Cai P, Zhu H, Liu R, Wang Y, Wei Y, Huang G, Liang J, Gao X (2014) Cytotoxicity and therapeutic effect of irinotecan combined with selenium nanoparticles. Biomaterials 35(31):8854–8866

    Google Scholar 

  • Gorain B, Choudhury H, Pandey M, Kesharwani P (2018) Paclitaxel loaded vitamin E-TPGS nanoparticles for cancer therapy. Mater Sci Eng C 91:868–880

    Article  CAS  Google Scholar 

  • Hariharan H, Al-Harbi N, Karuppiah P, Rajaram S (2012) Microbial synthesis of selenium nanocomposite using Saccharomyces cerevisiae and its antimicrobial activity against pathogens causing nosocomial infection. Chalcogenide Lett 9(12):509–515

    CAS  Google Scholar 

  • Hu Y, Liu T, Li J, Mai F, Li J, Chen Y, Jing Y, Dong X, Lin L, He J, Xu Y, Shan C, Hao J, Yin Z, Chen T, Wu Y (2019) Selenium nanoparticles as new strategy to potentiate γδ T cell anti-tumor cytotoxicity through upregulation of tubulin-α acetylation. Biomaterials. https://doi.org/10.1016/j.biomaterials.2019.119397

    Article  PubMed  Google Scholar 

  • Jain R, Dominic D, Jordan N, Rene ER, Weiss S, van Hullebusch ED, Hübner R, Lens PN (2016) Higher Cd adsorption on biogenic elemental selenium nanoparticles. Environ Chem Lett 14(3):381–386. https://doi.org/10.1007/s10311-016-0560-8

  • Johnson WD, Morrissey RL, Kapetanovic I, Crowell JA, McCormick DL (2008) Subchronic oral toxicity studies of Se-methylselenocysteine, an organoselenium compound for breast cancer prevention. Food Chem Toxicol 46(3):1068–1078

    Google Scholar 

  • Kalishwaralal K, Jeyabharathi S, Sundar K, Muthukumaran A (2016) A novel one-pot green synthesis of selenium nanoparticles and evaluation of its toxicity in zebrafish embryos. Artif Cells Nanomed Biotechnol 44(2):471–477. https://doi.org/10.3109/21691401.2014.962744

  • Khan S, Ullah MW, Siddique R, Liu Y, Ullah I, Xue M, Yang G, Hou H (2019) Catechins-modified selenium-doped hydroxyapatite nanomaterials for improved osteosarcoma therapy through generation of reactive oxygen species. Front Oncol 9:499. https://doi.org/10.3389/fonc.2019.00499

  • Khurana A, Tekula S, Saifi MA, Venkatesh P, Godugu C (2019) Therapeutic applications of selenium nanoparticles. Biomed Pharmacother 111:802–812

    Article  CAS  Google Scholar 

  • Klein EA, Thompson IM, Lippman SM, Goodman PJ, Albanes D, Taylor PR, Coltman C (2001) SELECT: the next prostate cancer prevention trial. J Urol 166(4):1311–1315

    Article  CAS  Google Scholar 

  • Kora AJ, Rastogi L (2016) Biomimetic synthesis of selenium nanoparticles by Pseudomonas aeruginosa ATCC 27853: an approach for conversion of selenite. J Environ Manage 181:231–236. https://doi.org/10.1016/j.jenvman

    Article  CAS  PubMed  Google Scholar 

  • Kumar S, Tomar MS, Acharya A (2015) Carboxylic group-induced synthesis and characterization of selenium nanoparticles and its anti-tumor potential on Dalton’s lymphoma cells. Colloids Surf B Biointerfaces 126:546–552. https://doi.org/10.1016/j.colsurfb.2015.01.009

  • Le PN, Nguyen NH, Nguyen CK, Tran NQ (2016) Smart dendrimer-based nanogel for enhancing 5-fluorouracil loading efficiency against MCF7 cancer cell growth. Bull Mater Sci 39(6):1493–1500

    Google Scholar 

  • Le Province Medicale (1912) In references to a publication to the use of selenium to treat a tongue epithelioma, 6 May 1912

    Google Scholar 

  • Li W, Zhu Y, Yan X et al (2000) The prevention of primary liver cancer by selenium in high-risk populations. Chin J Prev Med 34(6):336–338

    Google Scholar 

  • Li Z, Carrier L, Belame A et al (2009) Combination of methylselenocysteine with tamoxifen inhibits MCF-7 breast cancer xenografts in nude mice through elevated apoptosis and reduced angiogenesis. Breast Cancer Res Treat 118(1):33–43

    Google Scholar 

  • Li Y, Li X, Wong YS, Chen T, Zhang H, Liu C, Zheng W (2011) The reversal of cisplatin-induced nephrotoxicity by selenium nanoparticles functionalized with 11-mercapto-1-undecanol by inhibition of ROS-mediated apoptosis. Biomaterials 32(34):9068–9076. https://doi.org/10.1016/j.biomaterials.2011.08.001

  • Li H, Liu D, Li S, Xue C (2019) Synthesis and cytotoxicity of selenium nanoparticles stabilized by α-D-glucan from Castanea mollissima Blume. Int J Biol Macromol

    Google Scholar 

  • Lindshield BL, Ford NA, Canene-Adams K, Diamond AM, Wallig MA, Erdman Jr JW (2010) Selenium, but not lycopene or vitamin E, decreases growth of transplantable dunning R3327-H rat prostate tumors. PLoS ONE 5(4):10423

    Google Scholar 

  • Liong M, Lu J, Kovochich M, Xia T, Ruehm SG, Nel AE, Tamanoi F, Zink JI Multifunctional inorganic nanoparticles for imaging, targeting, and drug delivery. ACS Nano 2:889–896 (2009). https://doi.org/10.1021/nn800072t

  • Lippman SM, Klein EA, Goodman PJ, Lucia AS, Thompson IM, Ford LG, Parnes HL, Minasian LM, Gaziano JM, Hartline JA, Parsons JK, Bearden JD, Crrawford ED, Goodman GE, Claudio J, Winquist E, Cook ED, Karp DD, Walther P, Lieber MM, Kristal AR, Darke AK, Arnold KB, Ganz PA, Santella RM, Albanes D, Taylor PR, Probstfield JL, Jagpal TJ, Crowley JJ, Meyskens FL, Baker LH, Coltman CA (2009) Effect of selenium and vitamin E on risk of prostate cancer and other cancers. JAMA 301(1):39–51

    Google Scholar 

  • Liu T, Zeng L, Jiang W, Fu Y, Zheng W, Chen T (2015) Rational design of cancer targeted selenium nanoparticles to antagonize multidrug resistance in cancer cells. Nanomed Nanotechnol Biol Med 11:947–958. https://doi.org/10.1016/j.nano.2015.01.009

  • Liu F, Liu H, Liu R, Xiao C, Duan X, McClements DJ, Liu X (2019) Delivery of sesamol using polyethylene glycol-functionalized selenium nanoparticles in human liver cells in culture. J Agric Food Chem. https://doi.org/10.1021/acs.jafc.8b06924

    Article  PubMed  PubMed Central  Google Scholar 

  • Lü J, Zhang J, Jiang C, Deng Y, Özten N, Bosland MC (2016) Cancer chemoprevention research with selenium in the post-SELECT era: promises and challenges. Nutr Cancer 68(1):1–7

    Google Scholar 

  • Luesakul U, Puthong S, Neamati N (2018) Muangsin: pH-responsive selenium nanoparticles stabilized by folate-chitosan delivering doxorubicin for overcoming drug-resistant cancer cells. Carbohydr Polym 181:841–850. https://doi.org/10.1016/j.carbpol.2017.11.068

    Article  CAS  PubMed  Google Scholar 

  • Menon S et al (2018) Colloids Surf B Biointerfaces 170:280–292

    Google Scholar 

  • Misra S, Boylan M, Selvam A, Spallholz JE, Bjornstedt M (2016) Redox-active selenium compounds—from toxicity and cell death to cancer treatment. Nutrients 7:35–36

    Google Scholar 

  • Oldfield JE (1987) The two faces of selenium. J Nutr 117(12):2002–2008

    Google Scholar 

  • Peters U, Takata Y (2008) Selenium and the prevention of prostate and colorectal cancer. Mol Nutr Food Res 52(11):1261–1272

    Google Scholar 

  • Ranjitha R, Muddegowda U, Rai VR (2019) Potent activity of bioconjugated peptide and selenium nanoparticles against colorectal adenocarcinoma cells. Drug Dev Ind Pharm 1–21. https://doi.org/10.1080/03639045.20191634090

  • Redman C, Scott JA, Baines AT et al (1998) Inhibitory effect of selenomethionine on the growth of three selected human tumor cell lines. Cancer Lett 125(1–2):103–110

    Google Scholar 

  • Richie Jr JP, Das A, Calcagnotto AM, Sinha R, Neidig W, Liao J, Lengerich EJ, Berg A, Hartman TJ, Ciccarella A, Baker A, Kaag MG, Goodin S, DiPaola RS, El-Bayoumy K (2014) Comparative effects of two different forms of selenium on oxidative stress biomarkers in healthy men: a randomized clinical trial. Cancer Prev Res 7(8):796–804

    Google Scholar 

  • Riva C, Oreal H (2016) Selenium-enriched Arthrospira platensis potentiates docetaxel, oxaliplatin, and topotecan anticancer activity in epithelial tumors. J Appl Phycol 28(6):3371–3377

    Article  CAS  Google Scholar 

  • Rotruck JT, Pope AL, Ganther HE, Swanson AB, Hafeman DG, Hoekstra WG (1973) Selenium: biochemical role as a component of glutathione peroxidise. Science 179:588–590

    Google Scholar 

  • Sanmartín C, Plano D, Domínguez E, Font M, Calvo A, Prior C, Encio I, Palop JA (2009) Synthesis and pharmacological screening of several aroyl and heteroaroyl selenylacetic acid derivatives as cytotoxic and antiproliferative agents. Molecules 14:3313–3338

    Google Scholar 

  • Schrauzer GN, White DA, Schneider CJ (1977) Cancer mortality correlation studies. III. Statistical association with dietary selenium intakes. Bioinorg Chem 7:35–56

    Google Scholar 

  • Shamberger RJ, Frost DV (1969) Possible protective effect of selenium against human cancer. Can Med Assoc J 100:682

    CAS  PubMed  PubMed Central  Google Scholar 

  • Song D, Li X, Cheng Y, Xiao X, Lu Z, Wang Y, Wang F (2017) Aerobic biogenesis of selenium nanoparticles by Enterobacter cloacae Z0206 as a consequence of fumarate reductase mediated selenite reduction. Sci Rep 7:32–39. https://doi.org/10.1038/s41598-017-03558-3

  • Song M et al (2018) Phase I trial of selenium plus chemotherapy in gynecologic cancers. Gynecol Oncol. https://doi.org/10.1016/j.ygyno.2018.07.001

    Article  PubMed  PubMed Central  Google Scholar 

  • Spallholz JE (2019) Selenomethionine and methioninase: selenium free radical anticancer activity. In: Methionine dependence of cancer and aging: methods and protocols, pp 199–210

    Google Scholar 

  • Srivastava P, Kowshik M (2016) Anti-neoplastic selenium nanoparticles from Idiomarina sp. PR58-8. Enzyme Microb Technol 95:192–200. https://doi.org/10.1016/j.enzmictec.2016.08.002.S

  • Sugiura K, Benedict SR (1929) The action of certain dyestuffs on the growth of transplantable tumors. J Cancer Res 13(4):340–358

    Google Scholar 

  • Sun D, Liu Y, Yu Q, Zhou Y, Zhang R, Chen X, Hong A, Liu J (2013) The effects of luminescent ruthenium (II) polypyridyl functionalized selenium nanoparticles on bFGF-induced angiogenesis and AKT/ERK signalling. Biomaterials 34:171–180. https://doi.org/10.1016/j.biomaterials.2012.09.031

    Article  CAS  PubMed  Google Scholar 

  • Sun D, Liu Y, Yu Q, Qin X, Yang L, Zhou Y, Chen L, Liu J (2014) Inhibition of tumor growth and vasculature and fluorescence imaging using functionalized ruthenium-thiol protected selenium nanoparticles. Biomaterials 35(5):1572–1583. https://doi.org/10.1016/j.biomaterials.2013.11.007

    Article  CAS  PubMed  Google Scholar 

  • Suzuki M, Endo M, Shinohara F, Echigo S, Rikiishi H (2010) Differential apoptotic response of human cancer cells to organoselenium compounds. Cancer Chemother Pharmacol 66(3):475–484

    Google Scholar 

  • Tan L, Jia X, Jiang X, Zhang Y, Tang H, Yao S, Xie Q (2009) In vitro study on the individual and synergistic cytotoxicity of adriamycin and selenium nanoparticles against Bel7402 cells with a quartz crystal microbalance. Biosens Bioelectron 24:2268–2272. https://doi.org/10.1016/j.bios.2008.10.030

  • Tan H, Mo H-Y, Lau A, Xu Y-M (2012) Selenium species: current status and potentials in cancer prevention and therapy. Int J Mol Sci 20(1):75. https://doi.org/10.3390/ijms20010075

    Article  CAS  Google Scholar 

  • Tang S, Wang T, Jiang M et al (2019) Construction of arabinogalactans/selenium nanoparticles composites for enhancement of the antitumor activity. Int J Biol Macromol. https://doi.org/10.1016/j.ijbiomac.2019.01.152

  • Valdiglesias V, Pásaro E, Méndez J, Laffon B (2010) In vitro evaluation of selenium genotoxic, cytotoxic, and protective effects: a review. Arch Toxicol 337–351. https://doi.org/10.1007/s00204-009-0505-0

  • Vekariya KK, Kaur J, Tikoo K (2012) ERα signaling imparts chemotherapeutic selectivity to selenium nanoparticles in breast cancer. Nanomed Nanotechnol Biol Med 8:1125–1132. https://doi.org/10.1016/j.nano.2011.12.003

  • Wadhwani SA, Shedbalkar UU, Singh R, Chopade BA (2016) Biogenic selenium nanoparticles: current status and future prospects. Appl Microbiol Biotechnol 100:2555–2566. https://doi.org/10.1007/s00253-016-7300-7

  • Wang, L, Bonorden, MJ, Li, GX et al (2009) Methyl-selenium compounds inhibit prostate carcinogenesis in the transgenic adenocarcinoma of mouse prostate model with survival benefit. Cancer Prev Res 2(5):484–495

    Google Scholar 

  • Wang Y, Ma J, Zhou L, Chen J, Liu Y, Qiu Z, Zhang S (2012) Dual functional selenium-substituted hydroxyapatite. Interface Focus 2:378–386. https://doi.org/10.1098/rsfs.2012.0002

  • Wang X, Sun K, Tan Y, Wu S, Zhang J (2014) Efficacy and safety of selenium nanoparticles administered intraperitoneally for the prevention of growth of cancer cells in the peritoneal cavity. Free Radic Biol Med 72:1–10. https://doi.org/10.1016/j.freeradbiomed.2014.04.003

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Chen P, Zhao G, Sun K, Li D, Wan X, Zhang J (2015) Inverse relationship between elemental selenium nanoparticle size and inhibition of cancer cell growth in vitro and in vivo. Food Chem Toxicol 85:71–77. https://doi.org/10.1016/j.fct.2015.08.006

    Article  CAS  PubMed  Google Scholar 

  • Wang L, Wang J, Liu X, Liu Q, Zhang G, Liang L (2016) Association between selenium intake and the risk of pancreatic cancer: a meta-analysis of observational studies. Biosci Rep 36. https://doi.org/10.1042/BSR20160345e00395-e00395

  • Waters DJ, Chiang EC (2018) Five threads: how U-shaped thinking weaves together dogs, men, selenium, and prostate cancer risk. Free Radic Biol Med. https://doi.org/10.1016/j.freeradbiomed.2017.12.039

    Article  PubMed  Google Scholar 

  • Wu H, Li X, Liu W, Chen T, Li Y, Zheng W, Man CW-Y, Wong M-K, Wong KH (2012) Surface decoration of selenium nanoparticles by mushroom polysaccharides–protein complexes to achieve enhanced cellular uptake and antiproliferative activity. J Mater Chem 22(19):9602–9610

    Article  CAS  Google Scholar 

  • Wu TT, Peters AA, Tan PT et al (2014) Consequences of activating the calcium-permeable ion channel TRPV1 in breast cancer cells with regulated TRPV1 expression. Cell Calcium 56:59–67

    Article  CAS  Google Scholar 

  • Wu X, Zhao G, He Y, Wang W, Yang CS, Zhang J (2019) Pharmacological mechanisms of the anticancer action of sodium selenite against peritoneal cancer in mice. Pharmacol Res 147:104360

    Google Scholar 

  • Xia Y, Xu T, Wang C, Li Y, Lin Z, Zhao M, Zhu B (2018) Novel functionalized nanoparticles for tumor targeting co-delivery of doxorubicin and siRNA to enhance cancer therapy. Int J Nanomed 13:143–159

    Article  CAS  Google Scholar 

  • Xia Y, Xiao M, Zhao M, Xu T, Guo M, Wang C, Liu H (2019a) Doxorubicin-loaded functionalized selenium nanoparticles for enhanced antitumor efficacy in cervical carcinoma therapy. Mater Sci Eng C 110100

    Google Scholar 

  • Xia Y, Zhong J, Zhao M, Tang Y, Han N, Hua L, Zhu B (2019b) Galactose-modified selenium nanoparticles for targeted delivery of doxorubicin to hepatocellular carcinoma. Drug Deliv 26(1):1–11. https://doi.org/10.1080/10717544.2018.1556359

  • Xu X, Feng Y, Chen X, Wang Q, Meng T, Liu A (2019) Antitumor effects of seleno-β-lactoglobulin on human breast cancer MCF-7 and MDA-MB-231 cells in vitro. Toxicol In Vitro 104607

    Google Scholar 

  • Yoshizawa K, Willett WC, Morris SJ et al (1998) Study of prediagnostic selenium level in toenails and the risk of advanced prostate cancer. J Natl Cancer Inst 90(16):1219–1224

    Google Scholar 

  • Yu SY, Zhu YJ, Li WG, Huang QS, Huang CZ, Zhang QN et al (1991) A preliminary report on the intervention trials of primary liver cancer in high-risk populations with nutritional supplementation of selenium. Biol Trace Elem Res 29(3):289–294

    Article  CAS  Google Scholar 

  • Zhang J, Wang X, Xu TT (2008) Elemental selenium at nano size (Nano-Se) as a potential chemopreventive agent with reduced risk of selenium toxicity: comparison with se-methylselenocysteine in mice. Toxicol Sci 101:2231. https://doi.org/10.1093/toxsci/kfm221

    Article  CAS  Google Scholar 

  • Zhang P, Hu L, Yin Q, Zhang Z, Feng L, Li Y (2012) Transferrin-conjugated polyphosphoester hybrid micelle loading paclitaxel for brain-targeting delivery: synthesis, preparation and in vivo evaluation. J Control Release 159:429–434

    Article  CAS  Google Scholar 

  • Zhang Y, Li X, Huang Z, Zheng W, Fan C, Chen T (2013) Enhancement of cell permeabilization apoptosis-inducing activity of selenium nanoparticles by ATP surface decoration. Nanomed Nanotechnol Biol Med 9:74–84. https://doi.org/10.1016/j.nano.2012.04.002

  • Zhang Z, Du Y, Liu T, Wong KH, Chen T (2019). Biomater Sci. https://doi.org/10.1039/C9BM01104H

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhong J, Xia Y, Hua L, Liu X, Xiao M, Xu T, Zhu B, Cao H (2019) Functionalized selenium nanoparticles enhance the anti-EV71 activity of oseltamivir in human astrocytoma cell model. Artif Cells Nanomed Biotechnol 47(1):3485–3491. https://doi.org/10.1080/21691401.2019.1640716

  • Zhuo H, Smith AH, Steinmaus C (2004) Selenium and lung cancer: a quantitative analysis of heterogeneity in the current epidemiological literature. Cancer Epidemiol 771–778

    Google Scholar 

  • Zinicovscaia I, Rudi L, Valuta A, Cepoi L, Vergel K, Frontasyeva MV, Safonov A, Wells M, Grozdov D (2016) Biochemical changes in nostoc linckia associated with selenium nanoparticles biosynthesis. Ecol Chem Eng S 23:559–569. https://doi.org/10.1515/eces-2016-0039

    Article  CAS  Google Scholar 

  • Zou J, Su S, Chen Z, Liang F, Zeng Y, Cen W, Huang D (2019) Hyaluronic acid-modified selenium nanoparticles for enhancing the therapeutic efficacy of paclitaxel in lung cancer therapy. Artif Cells Nanomed Biotechnol 47(1):3456–3464

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors are thankful to Chandigarh University for providing support for carrying out this research.

Author Contribution

A.R.P. had the idea for the article, A.R.P had performed the literature search and data analysis, and A.R.P and S.S. had drafted and critically revised the work.

Funding

No Funding Source.

Data Availability

All data generated or analyzed during this study are included in this article.

Declarations

Ethics approval and consent to participate: Not applicable.

Consent for Publication

Not applicable.

Conflict of Interest

The authors declare no competing interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anu Radha Pathania .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Pathania, A.R., Sharma, S. (2022). Therapeutic Potential of Seleno-Compounds in Cancer—An Overview. In: Ratan, J.K., Sahu, D., Pandhare, N.N., Bhavanam, A. (eds) Advances in Chemical, Bio and Environmental Engineering. CHEMBIOEN 2021. Environmental Science and Engineering. Springer, Cham. https://doi.org/10.1007/978-3-030-96554-9_57

Download citation

Publish with us

Policies and ethics