Skip to main content

Functionally Modified Ionic Liquids as Green Solvents for Extraction and Removal of Toxic Metal Ions from Contaminated Water

  • Chapter
  • First Online:
Green Chemical Analysis and Sample Preparations

Abstract

Ionic liquids are those ionic compounds which are liquid below 100 °C and are a combination of organic cations and inorganic/organic anions. They have wide potential to be used as solvents, extraction systems especially for biomedical applications. The past two decades have witnessed exponential rise in publications wherein ionic liquids have found applications in metal ion detection by coordination. This overview gives you a brief insight into the use of different ionic liquids for metal ion analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

A:

Anion

BF4:

Tetrafluoroborate

Bu:

Butyl group

°C:

Degree centigrade

EDTA:

Ethylenediaminetetraacetate

[Hbet][Tf2N]:

Betanium bis(trifluoromethylsulfonyl)imide

PF6:

Hexafluorophosphate

R:

Alkyl group

Tf2N:

Bis(trifluoromethylsulfonyl)imide anion

X:

Halide ion

References

  • Azimi, A. et al. (2017) ‘Removal of Heavy Metals from Industrial Wastewaters ’: a review, Chembioeng reviews. (1), pp. 1–24. doi: https://doi.org/10.1002/cben.201600010.

  • Chiappe, C., Malvaldi, M. and Pomelli, C. S. (2009) ‘Ionic liquids: Solvation ability and polarity ’, Pure and Applied Chemistry. 81(4), pp. 767–776. https://doi.org/10.1351/PAC-CON-08-09-08.

    Article  CAS  Google Scholar 

  • Clare, B., Sir, A. and Macfarlane, D. R. (2009) ‘Synthesis, Purification and Characterization of Ionic Liquids’, Ionic Liquids. doi: https://doi.org/10.1007/128.

  • Diabate, P. D. and Dupont, L. (2018) ‘Novel Task Specific Ionic Liquids to Remove Heavy metals’, Metals. pp. 1–15. doi: https://doi.org/10.3390/met8060412.

  • Dupont, David; Raiguel, Stijn; Binnemans, Koen (2015) ‘Sulfonic acid functionalized ionic liquids for dissolution of metal oxides and solvent extraction of metal ions’, Chemical Communications. 51(43), pp. 9006–9009. doi: https://doi.org/10.1039/c5cc02731d.

    Article  CAS  Google Scholar 

  • Egorov, V. M. et al. (2010) ‘Talanta Task-specific ionic liquid trioctylmethylammonium salicylate as extraction solvent for transition metal ions’, 80(3), pp. 1177–1182. doi: https://doi.org/10.1016/j.talanta.2009.09.003.

  • Feng, R., Zhao, D. and Guo, Y. (2010) ‘Revisiting Characteristics of Ionic Liquids: A Review for Further Application Development’, Journal of Environmental Protection. pp. 95–104. doi: https://doi.org/10.4236/jep.2010.12012.

  • Fu, F. and Wang, Q. (2011) ‘Removal of heavy metal ions from wastewaters: A review’, Journal of Environmental Management. Elsevier Ltd, 92(3), pp. 407–418. doi: https://doi.org/10.1016/j.jenvman.2010.11.011.

  • Gaetano, Y. De et al. (2015) ‘Ionic liquids derived from esters of Glycine Betaine: Synthesis and characterization’, Journal of Molecular Liquids. Elsevier B.V., 207, pp. 60–66. doi: https://doi.org/10.1016/j.molliq.2015.03.016.

  • Germani, R. and Mancini, V. (2007) ‘Mercury extraction by ionic liquids: temperature and alkyl chain length effect’, Tetrahedron Letters. pp. 38–41. doi: https://doi.org/10.1016/j.tetlet.2007.01.038.

  • Harjani, J. R., Friscic, T., Singer, R. D. and Gillivray, R. L. M. (2008) ‘Removal of metal ions from aqueous solutions using chelating task-specific ionic liquids’, Dalton Transactions. (34), pp. 4595–4614. doi: https://doi.org/10.1039/b806369a.

  • Hallett, J. P. and Welton, T. (2011) ‘Room-Temperature Ionic Liquids: Solvents for Synthesis and Catalysis’, Chemical Reviews. 2, pp. 3508–3576.

    Google Scholar 

  • Han, D. and Row, K. H. (2010) ‘Recent Applications of Ionic Liquids in Separation Technology’, Molecules. pp. 2405–2426. doi: https://doi.org/10.3390/molecules15042405.

  • Hanke, C. G., Johansson, A. and Harper, J. B. (2003) ‘Why are aromatic compounds more soluble than aliphatic compounds in dimethylimidazolium ionic liquids ? A simulation study’, Chemical Physics Letters. 374, pp. 85–90. doi: https://doi.org/10.1016/S0009-2614(03)00703-6.

    Article  CAS  Google Scholar 

  • Hoogerstraete, T. Vander, Onghena, B. and Binnemans, K. (2013) ‘Homogeneous Liquid − Liquid Extraction of Metal Ions with a Functionalized Ionic Liquid’. Journal of physical Chemistry Letters. (4), pp. 1659–1682.

    Google Scholar 

  • Idani, K. K., Irayama, N. H. and Mura, H. I. (2008) ‘Extraction Behavior of Divalent Metal Cations in Ionic Liquid Chelate Extraction Systems Using 1-Alkyl-3-methylimidazolium Bis (trifluoromethanesulfonyl) imides and Thenoyltrifluoroacetone’, Analytical Sciences. 24(October), pp. 1251–1254.

    Google Scholar 

  • Janssen, C. H. C. et al. (2015) ‘International Reviews in Physical Chemistry Metal extraction to ionic liquids: the relationship between structure, mechanism and application’, International Reviews in Physical Chemistry. (November). doi: https://doi.org/10.1080/0144235X.2015.1088217.

  • Kaur, G., Singh, G. and Singh, J. (2018a) ‘Photochemical tuning of materials: A click chemistry perspective’, Materials Today Chemistry. Elsevier Ltd, 8, pp. 56–84. doi: https://doi.org/10.1016/j.mtchem.2018.03.002.

  • Kaur, N. et al. (2018b) ‘RSC Advances Molecular keypad controlled circuit for Ce ( III) and NO 3 À ions recognition by m w synthesized silicon- embedded organic luminescent sensor’, RSC Advances. Royal Society of Chemistry, 8(3), pp. 36445–36452. doi: https://doi.org/10.1039/C8RA07294A.

    Article  CAS  Google Scholar 

  • Kaur, P. et al. (2019) ‘Journal of Photochemistry & Photobiology A: Chemistry Selective two way Cd ( II) and Co ( II) ions detection by 1, 2, 3 – triazole linked fluorescein derivative’, Journal of Photochemistry & Photobiology, A: Chemistry. Elsevier, 382(March), p. 111847. doi: https://doi.org/10.1016/j.jphotochem.2019.05.010.

  • Kumbasar, R. A. (2009) ‘Hydrometallurgy Extraction and concentration study of cadmium from zinc plant leach solutions by emulsion liquid membrane using trioctylamine as extractant’, Hydrometallurgy. Elsevier B.V., 95(3–4), pp. 290–296. doi: https://doi.org/10.1016/j.hydromet.2008.07.001.

  • Lertlapwasin, R. et al. (2010) ‘Ionic liquid extraction of heavy metal ions by 2-aminothiophenol in 1-butyl-3-methylimidazolium hexafluorophosphate and their association constants’, Separation and Purification Technology. Elsevier B.V., 72(1), pp. 70–76. doi: https://doi.org/10.1016/j.seppur.2010.01.004.

  • Lopes, N. C. et al. (2010) ‘Volatility of Aprotic Ionic Liquids–A Review’, (March 2005), pp. 3–12.

    Google Scholar 

  • Mehdi, H. et al. (2010) ‘Hydrophobic ionic liquids with strongly coordinating anions w’, Chemical Communications. pp. 234–236. doi: https://doi.org/10.1039/b914977e.

  • Messadi, A. et al. (2013) ‘Task-specific ionic liquid with coordinating anion for heavy metal ion extraction: Cation exchange versus ion-pair extraction’, Separation and Purification Technology, 107, pp. 172–178. doi: https://doi.org/10.1016/j.seppur.2013.01.015.

    Article  CAS  Google Scholar 

  • Murray, S. M. et al. (2013) ‘Thermophysical Properties of Imidazolium-Based Lipidic Ionic Liquids’. Journal of Chemical Engineering Data, (58), pp. 1516–1527.

    Google Scholar 

  • Olivier, J. et al. (2009) ‘Terpyridine-functionalized imidazolium ionic liquids’, Chemical Communications. pp. 1133–1135. doi: https://doi.org/10.1039/b815979c.

  • Papaiconomou, N. et al. (2008) ‘Selective Extraction of Copper, Mercury, Silver, and Palladium Ions from Water Using Hydrophobic Ionic Liquids’, Industrial & Engineering Chemical Research. pp. 5080–5086.

    Google Scholar 

  • Parmentier, D., Hoogerstraete, V. and Banerjee, D. (2016) ‘Transition metals from chloride media with the’, Dalton Transactions. Royal Society of Chemistry. (2). doi: https://doi.org/10.1039/c6dt00833j.

  • Rani, A. et al. (2021) ‘Inorganica Chimica Acta “Quick CuAAC” Chemistry for Hg (II) and Mn (II) ion sensing via 9H-carbazole derivatives’, Inorganica Chimica Acta. Elsevier B.V., 527(August), p. 120560. doi: https://doi.org/10.1016/j.ica.2021.120560.

  • Reyna-gonza, J. M. et al. (2010) ‘Extraction of Copper (II) Ions from Aqueous Solutions with a Methimazole-Based Ionic Liquid’, Analytical Chemistry. 82(18), pp. 7691–7698.

    Article  Google Scholar 

  • Rocha, M. A. A. et al. (2014) ‘Liquids with long alkyl chains Vapor pressures of 1, 3-dialkylimidazolium bis (trifluoromethylsulfonyl) imide ionic liquids with long alkyl chains’, 134502. doi: https://doi.org/10.1063/1.4896704.

  • Rout, A. (2012) ‘Room temperature ionic liquids for the separation of actinides and fission products’.

    Google Scholar 

  • Rout, A. and Binnemans, K. (2016) ‘Efficient separation of transition metals from rare earths by an undiluted phosphonium thiocyanate’, Physical Chemistry Chemical Physics. Royal Society of Chemistry, 18, pp. 16039–16045. doi: https://doi.org/10.1039/C6CP02301K.

  • Saini, P., Singh, G., Kaur, G., Singh, J., et al. (2021b) Click generated o-Cresolphthalein linked 1,2,3-triazole derivative for selective Pb(II) ion recognition, Journal of Molecular Structure. pp. 1–7. doi: https://doi.org/10.1016/j.molstruc.2021.131985.

  • Saini, P., Singh, G., Kaur, G. and Singh, J. (2021a) ‘Robust and Versatile Cu (I) metal frameworks as potential catalysts for azide-alkyne cycloaddition reactions: Review’, Molecular Catalysis. Elsevier B.V., 504(December 2020), p. 111432. doi: https://doi.org/10.1016/j.mcat.2021.111432.

  • Salanne, M., Rotenberg, B. and Madden, P. A. (2011) ‘Imidazolium Ionic Liquid Interfaces with Vapor and Graphite: Interfacial Tension and Capacitance from Coarse-Grained Molecular Simulations’, pp. 16613–16618.

    Google Scholar 

  • Saleem, M. and Lee, K. H. (2015) 'Optical sensor: a promising strategy for environmental and biomedical monitoring of ionic species' RSC Advances. doi: https://doi.org/10.1039/C5RA11388A.

  • Schriks, M. et al. (2010) ‘Toxicological relevance of emerging contaminants for drinking water quality’, Water Research. Elsevier Ltd, 44(2), pp. 461–476. doi: https://doi.org/10.1016/j.watres.2009.08.023.

    Article  CAS  Google Scholar 

  • Shimizu, K. and Bernardes, C. E. S. (2014) ‘Conference paper The complex structure of ionic liquids at an atomistic level: Simulations’, 86(2), pp. 119–133. doi: https://doi.org/10.1515/pac-2014-5021.

  • Singh, G. et al. (2014) ‘Synthesis of novel 1, 2, 3-triazole based silatranes via “click silylation”’, Journal of Organometallic Chemistry. Elsevier B.V, 769, pp. 124–129. doi: https://doi.org/10.1016/j.jorganchem.2014.07.014.

  • Singh, G. et al. (2015) ‘Design of selective 8-methylquinolinol based ratiometric Fe2+ and Fe3+/H2PO4 fluorescent chemosensor mimicking NOR and IMPLICATION logic gates’, Journal of Luminescence. Elsevier, 165, pp. 123–129. doi: https://doi.org/10.1016/j.jlumin.2015.04.027.

    Article  CAS  Google Scholar 

  • Singh, G. et al. (2018) ‘Coumarin–derived Organosilatranes: Functionalization at magnetic silica surface and selective recognition of Hg2+ ion’, Sensors and Actuators, B: Chemical. Elsevier B.V., 266, pp. 861–872. doi: https://doi.org/10.1016/j.snb.2018.03.036.

  • Taylor, P. et al. (2014) 'Extraction of Metal Ions with Task Specific Ionic Liquids: Influence of a Coordinating Anion Extraction of Metal Ions with Task Specific Ionic Liquids ’, Separation Science and Technology (January 2015), pp. 37–41. doi: https://doi.org/10.1080/01496395.2014.952747.

  • Xu, L. et al. (2004) ‘A green, ionic liquid and quaternary ammonium salt-catalyzed Aza-Michael reaction of a,b-ethylenic compounds with amines in water’, New Journal of Chemistry. pp. 183–184.

    Google Scholar 

  • Zhao, H. and Malhotra, S. V (2002) ‘Applications of Ionic Liquids in Organic Synthesis’, Aldrich Acta. 35(3), pp. 14–22.

    Google Scholar 

  • Zhao, H., Xia, S. and Ma, P. (2005) ‘Use of ionic liquids as “ green ” solvents for extractions’, Journal of Chemical Technology & Biotechnology. (March), pp. 1089–1096. doi: https://doi.org/10.1002/jctb.1333.

Download references

Conflict of Interest

Authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Saini, P., Kaur, G., Singh, J., Singh, H. (2022). Functionally Modified Ionic Liquids as Green Solvents for Extraction and Removal of Toxic Metal Ions from Contaminated Water. In: El-Maghrabey, M.H., Sivasankar, V., El-Shaheny, R.N. (eds) Green Chemical Analysis and Sample Preparations. Springer, Cham. https://doi.org/10.1007/978-3-030-96534-1_8

Download citation

Publish with us

Policies and ethics