Skip to main content

Emerging Organic Contaminants, Pharmaceuticals and Personal Care Products (PPCPs): A Threat to Water Quality

  • Chapter
  • First Online:
  • 343 Accesses

Abstract

Underground water contamination is a big challenge of this century. Emerging organic contaminants (EOC), personal care products (PCPs), industrial products, pesticides, pharmaceuticals, engineered nanomaterials, veterinary products, and food additives may pose threat to human health, and ecosystem. The ground water contamination which is the main source of drinking water, is an area of greater concern for the present and future of human civics. This chapter encompasses the possible emission sources in groundwater, contaminated surface water, and the fate of EOC, PCPs, and pharmaceuticals. The advancements in analytical techniques and precise equipment, quantitative detection of these contaminants is now possible and more compounds can be speckled now. Probably it is not possible to remove these pollutants from underground water reservoirs; however; detection of contaminants, their control at source, awareness campaigns and regulatory framework are possible approaches to compete this alarming challenge.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abe, A. (1999). Distribution of 1, 4-dioxane in relation to possible sources in the water environment. Science of the total environment, 227(1), 41–47.

    Article  CAS  Google Scholar 

  • Ahrens, L., Felizeter, S., Sturm, R., Xie, Z., & Ebinghaus, R. (2009). Polyfluorinated compounds in waste water treatment plant effluents and surface waters along the River Elbe, Germany. Marine pollution bulletin, 58(9), 1326–1333.

    Article  CAS  Google Scholar 

  • Awad, Y. M., Kim, S. C., Abd El-Azeem, S. A., Kim, K. H., Kim, K. R., Kim, K.,.. & Ok, Y. S. (2014). Veterinary antibiotics contamination in water, sediment, and soil near a swine manure composting facility. Environmental earth sciences, 71(3), 1433–1440.

    Article  CAS  Google Scholar 

  • Barnes, K. K., Christenson, S. C., Kolpin, D. W., Focazio, M. J., Furlong, E. T., Zaugg, S. D.,.. & Barber, L. B. (2004). Pharmaceuticals and other organic waste water contaminants within a leachate plume downgradient of a municipal landfill. Groundwater Monitoring & Remediation, 24(2), 119–126.

    Article  CAS  Google Scholar 

  • Barnes, K. K., Kolpin, D. W., Furlong, E. T., Zaugg, S. D., Meyer, M. T., & Barber, L. B. (2008). A national reconnaissance of pharmaceuticals and other organic wastewater contaminants in the United States—I) Groundwater. Science of the total environment, 402(2–3), 192–200.

    Google Scholar 

  • Bartelt-Hunt, S., Snow, D. D., Damon-Powell, T., & Miesbach, D. (2011). Occurrence of steroid hormones and antibiotics in shallow groundwater impacted by livestock waste control facilities. Journal of contaminant hydrology, 123(3–4), 94–103.

    Article  CAS  Google Scholar 

  • Bauld, J. (1996, May). Groundwater quality: human impact on a hidden resource. In NATIONAL CONFERENCE PUBLICATION-INSTITUTION OF ENGINEERS AUSTRALIA NCP (Vol. 1, pp. 143–148). Institution of Engineers, Australia.

    Google Scholar 

  • Behera, S. K., Kim, H. W., Oh, J. E., & Park, H. S. (2011). Occurrence and removal of antibiotics, hormones, and several other pharmaceuticals in wastewater treatment plants of the largest industrial city of Korea. Science of the total environment, 409(20), 4351–4360.

    Article  CAS  Google Scholar 

  • Benotti, M. J., & Brownawell, B. J. (2009). Microbial degradation of pharmaceuticals in estuarine and coastal seawater. Environmental Pollution, 157(3), 994–1002.

    Article  CAS  Google Scholar 

  • Besse, J. P., & Garric, J. (2008). Human pharmaceuticals in surface waters: Implementation of a prioritization methodology and application to the French situation. Toxicology Letters, 176(2), 104–123.

    Article  CAS  Google Scholar 

  • Bexfield, L. M., Toccalino, P. L., Belitz, K., Foreman, W. T., & Furlong, E. T. (2019). Hormones and pharmaceuticals in groundwater are used as a source of drinking water across the United States. Environmental science & technology, 53(6), 2950–2960.

    Article  CAS  Google Scholar 

  • Boorman, G. A. (1999). Drinking water disinfection byproducts: review and approach to toxicity evaluation. Environmental health perspectives, 107(suppl 1), 207–217.

    Article  CAS  Google Scholar 

  • Bradley, P. M., Barber, L. B., Duris, J. W., Foreman, W. T., Furlong, E. T., Hubbard, L. E.,.. & Kolpin, D. W. (2014). Riverbank filtration potential of pharmaceuticals in a wastewater-impacted stream. Environmental pollution, 193, 173–180.

    Google Scholar 

  • Bradley, P. M., Barber, L. B., Kolpin, D. W., McMahon, P. B., & Chapelle, F. H. (2007). Biotransformation of caffeine, cotinine, and nicotine in stream sediments: Implications for use as wastewater indicators. Environmental Toxicology and Chemistry: An International Journal, 26(6), 1116–1121.

    Article  CAS  Google Scholar 

  • Bruchet, A., Hochereau, C., Picard, C., Decottignies, V., Rodrigues, J. M., & Janex-Habibi, M. L. (2005). Analysis of drugs and personal care products in French source and drinking waters: the analytical challenge and examples of application. Water science and technology, 52(8), 53–61.

    Article  CAS  Google Scholar 

  • Buerge, I. J., Buser, H. R., Kahle, M., Muller, M. D., & Poiger, T. (2009). Ubiquitous occurrence of the artificial sweetener acesulfame in the aquatic environment: an ideal chemical marker of domestic wastewater in groundwater. Environmental science & technology, 43(12), 4381–4385.

    Article  CAS  Google Scholar 

  • Buerge, I. J., Buser, H. R., Müller, M. D., & Poiger, T. (2003a). Behavior of the polycyclic musks HHCB and AHTN in lakes, two potential anthropogenic markers for domestic wastewater in surface waters. Environmental science & technology, 37(24), 5636–5644.

    Article  CAS  Google Scholar 

  • Buerge, I. J., Buser, H. R., Poiger, T., & Müller, M. D. (2006). Occurrence and fate of the cytostatic drugs cyclophosphamide and ifosfamide in wastewater and surface waters. Environmental science & technology, 40(23), 7242–7250.

    Article  CAS  Google Scholar 

  • Buerge, I. J., Keller, M., Buser, H. R., Müller, M. D., & Poiger, T. (2011). Saccharin and other artificial sweeteners in soils: estimated inputs from agriculture and households, degradation, and leaching to groundwater. Environmental science & technology, 45(2), 615–621.

    Article  CAS  Google Scholar 

  • Buerge, I. J., Poiger, T., Müller, M. D., & Buser, H. R. (2003b). Caffeine, an anthropogenic marker for wastewater contamination of surface waters. Environmental science & technology, 37(4), 691–700.

    Article  CAS  Google Scholar 

  • Burke, V., Greskowiak, J., Asmuß, T., Bremermann, R., Taute, T., & Massmann, G. (2014a). Temperature dependent redox zonation and attenuation of wastewater-derived organic micropollutants in the hyporheic zone. Science of the Total Environment, 482, 53–61.

    Article  Google Scholar 

  • Burke, V., Richter, D., Hass, U., Duennbier, U., Greskowiak, J., & Massmann, G. (2014b). Redox-dependent removal of 27 organic trace pollutants: compilation of results from tank aeration experiments. Environmental earth sciences, 71(8), 3685–3695.

    Article  CAS  Google Scholar 

  • Buszka, P. M., Yeskis, D. J., Kolpin, D. W., Furlong, E. T., Zaugg, S. D., & Meyer, M. T. (2009). Waste-indicator and pharmaceutical compounds in landfill-leachate-affected ground water near Elkhart, Indiana, 2000–2002. Bulletin of Environmental Contamination and Toxicology, 82(6), 653–659.

    Article  CAS  Google Scholar 

  • C.G. Daughton and T.A.Ternes,“Pharmaceuticals and personal care products in the environment: agents of subtle change?” Environmental Health Perspectives, vol 107, pp. 907–38, 1999a.

    Google Scholar 

  • Cabeza, Y., Candela, L., Ronen, D., & Teijon, G. (2012). Monitoring the occurrence of emerging contaminants in treated wastewater and groundwater between 2008 and 2010. The Baix Llobregat (Barcelona, Spain). Journal of hazardous materials, 239, 32–39.

    Article  Google Scholar 

  • Celiz, M. D., Tso, J., & Aga, D. S. (2009). Pharmaceutical metabolites in the environment: analytical challenges and ecological risks. Environmental Toxicology and Chemistry, 28(12), 2473–2484.

    Article  CAS  Google Scholar 

  • Chefetz, B., Mualem, T., & Ben-Ari, J. (2008). Sorption and mobility of pharmaceutical compounds in soil irrigated with reclaimed wastewater. Chemosphere, 73(8), 1335–1343.

    Article  CAS  Google Scholar 

  • Chen, H., Gao, B., Li, H., & Ma, L. Q. (2011). Effects of pH and ionic strength on sulfamethoxazole and ciprofloxacin transport in saturated porous media. Journal of contaminant hydrology, 126(1–2), 29–36.

    Article  CAS  Google Scholar 

  • Clara, M., Strenn, B., & Kreuzinger, N. (2004). Carbamazepine as a possible anthropogenic marker in the aquatic environment: investigations on the behaviour of carbamazepine in wastewater treatment and during groundwater infiltration. Water research, 38(4), 947–954.

    Article  CAS  Google Scholar 

  • Close, M. E. (1996). Survey of pesticides in New Zealand groundwaters, 1994.

    Google Scholar 

  • Corbel, V., Stankiewicz, M., Pennetier, C., Fournier, D., Stojan, J., Girard, E.,.. & Lapied, B. (2009). Evidence for inhibition of cholinesterases in insect and mammalian nervous systems by the insect repellent deet. BMC biology, 7(1), 1–11.

    Article  Google Scholar 

  • Crane, M., Watts, C., & Boucard, T. (2006). Chronic aquatic environmental risks from exposure to human pharmaceuticals. Science of the total environment, 367(1), 23–41.

    Article  CAS  Google Scholar 

  • Cronin, A. A., Rueedi, J., & Morris, B. L. (2006). The effectiveness of selected microbial and chemical indicators to detect sewer leakage impacts on urban groundwater quality. Water science and technology, 54(6–7), 145–152.

    Article  CAS  Google Scholar 

  • Daughton, C. G. (2004). Non-regulated water contaminants: emerging research. Environmental impact assessment review, 24(7–8), 711–732.

    Article  Google Scholar 

  • Daughton, C. G., & Ternes, T. A. (1999). Pharmaceuticals and personal care products in the environment: agents of subtle change?. Environmental health perspectives, 107(suppl 6), 907–938.

    Article  CAS  Google Scholar 

  • Del Rosario, K. L., Mitra, S., Humphrey Jr, C. P., & O’Driscoll, M. A. (2014). Detection of pharmaceuticals and other personal care products in groundwater beneath and adjacent to onsite wastewater treatment systems in a coastal plain shallow aquifer. Science of the total environment, 487, 216–223.

    Article  Google Scholar 

  • Doretto, K. M., Peruchi, L. M., & Rath, S. (2014). Sorption and desorption of sulfadimethoxine, sulfaquinoxaline and sulfamethazine antimicrobials in Brazilian soils. Science of the Total Environment, 476, 406–414.

    Article  Google Scholar 

  • Drewes, J. E. (2009). Ground water replenishment with recycled water—water quality improvements during managed aquifer recharge. Groundwater, 47(4), 502–505.

    Article  CAS  Google Scholar 

  • Drewes, J. E., Arnold, R., & Fox, P. (2000). Fate of pharmaceutical chemicals during groundwater recharge using reclaimed water. National Groundwater Association, Westerville, Ohio, USA.

    Google Scholar 

  • Drewes, J. E., Heberer, T., Rauch, T., & Reddersen, K. (2003). Fate of pharmaceuticals during ground water recharge. Groundwater Monitoring & Remediation, 23(3), 64–72.

    Article  CAS  Google Scholar 

  • EC. Biocidal Products Directive 98/8/EC

    Google Scholar 

  • EC. Drinking Water Directive 98/83/EC.

    Google Scholar 

  • EC. Environmental Quality Standards Directive 2008/105/EC (also known as the Priority Substances Directive)

    Google Scholar 

  • EC. Groundwater Directive 2006/118/EC

    Google Scholar 

  • EC. Plant Protection Products Directive 91/414/EEC

    Google Scholar 

  • EC. Review of priority substances under the WFD, COM(2011)876

    Google Scholar 

  • EC. Water Framework Directive – 2000/60/EC

    Google Scholar 

  • Eggen, T., Moeder, M., & Arukwe, A. (2010). Municipal landfill leachates: a significant source for new and emerging pollutants. Science of the Total Environment, 408(21), 5147–5157.

    Article  CAS  Google Scholar 

  • Ellis, J. B. (2006). Pharmaceutical and personal care products (PPCPs) in urban receiving waters. Environmental pollution, 144(1), 184–189.

    Article  CAS  Google Scholar 

  • Ellis, J. B., Revitt, D. M., Lister, P., Willgress, C., & Buckley, A. (2003). Experimental studies of sewer exfiltration. Water Science and Technology, 47(4), 61–67.

    Article  CAS  Google Scholar 

  • Ens, W., Senner, F., Gygax, B., & Schlotterbeck, G. (2014). Development, validation, and application of a novel LC-MS/MS trace analysis method for the simultaneous quantification of seven iodinated X-ray contrast media and three artificial sweeteners in surface, ground, and drinking water. Analytical and bioanalytical chemistry, 406(12), 2789–2798.

    Article  CAS  Google Scholar 

  • EPA, U. (2006). Edition of the drinking water standards and health advisories. US Environmental Protection Agency, Washington, DC, epa.

    Google Scholar 

  • Erses, A. S., Onay, T. T., & Yenigun, O. (2008). Comparison of aerobic and anaerobic degradation of municipal solid waste in bioreactor landfills. Bioresource technology, 99(13), 5418–5426.

    Article  CAS  Google Scholar 

  • EC. Environmental Quality Standards Directive 2008/105/EC

    Google Scholar 

  • Fent, K., Weston, A. A., & Caminada, D. (2006). Ecotoxicology of human pharmaceuticals. Aquatic toxicology, 76(2), 122–159.

    Article  CAS  Google Scholar 

  • Fick, J., Söderström, H., Lindberg, R. H., Phan, C., Tysklind, M., & Larsson, D. J. (2009). Contamination of surface, ground, and drinking water from pharmaceutical production. Environmental Toxicology and Chemistry, 28(12), 2522–2527.

    Article  CAS  Google Scholar 

  • Focazio, M. J., Kolpin, D. W., Barnes, K. K., Furlong, E. T., Meyer, M. T., Zaugg, S. D.,.. & Thurman, M. E. (2008). A national reconnaissance for pharmaceuticals and other organic wastewater contaminants in the United States—II) Untreated drinking water sources. Science of the total Environment, 402(2–3), 201–216.

    Google Scholar 

  • Fram, M. S., & Belitz, K. (2011). Occurrence and concentrations of pharmaceutical compounds in groundwater used for public drinking-water supply in California. Science of the Total Environment, 409(18), 3409–3417.

    Article  CAS  Google Scholar 

  • Fromme, H., Otto, T., & Pilz, K. (2001). Polycyclic musk fragrances in different environmental compartments in Berlin (Germany). Water research, 35(1), 121–128.

    Article  CAS  Google Scholar 

  • Galassi, S., Provini, A., & Halfon, E. (1996). Risk assessment for pesticides and their metabolites in water. International journal of environmental analytical chemistry, 65(1–4), 331–344.

    Article  CAS  Google Scholar 

  • Garrett, P., Moreau, M., & Lowry, J. D. (1986, November). MTBE as a ground water contaminant. In Proceedings of the NWWA-API conference on petroleum hydrocarbons and organic chemicals in ground water-prevention, detection and restoration (pp. 227–238).

    Google Scholar 

  • Gasser, G., Rona, M., Voloshenko, A., Shelkov, R., Tal, N., Pankratov, I.,.. & Lev, O. (2010). Quantitative evaluation of tracers for quantification of wastewater contamination of potable water sources. Environmental science & technology, 44(10), 3919–3925.

    Article  CAS  Google Scholar 

  • Giger, W., Schaffner, C., & Kohler, H. P. E. (2006). Benzotriazole and tolyltriazole as aquatic contaminants. 1. Input and occurrence in rivers and lakes. Environmental science & technology, 40(23), 7186–7192.

    Article  CAS  Google Scholar 

  • Gilbert, R. M., Marshman, J. A., Schwieder, M., & Berg, R. (1976). Caffeine content of beverages as consumed. Canadian Medical Association Journal, 114(3), 205.

    CAS  Google Scholar 

  • Glassmeyer, S. T., Furlong, E. T., Kolpin, D. W., Cahill, J. D., Zaugg, S. D., Werner, S. L.,.. & Kryak, D. D. (2005). Transport of chemical and microbial compounds from known wastewater discharges: potential for use as indicators of human fecal contamination. Environmental science & technology, 39(14), 5157–5169.

    Article  CAS  Google Scholar 

  • Godfrey, E., Woessner, W. W., & Benotti, M. J. (2007). Pharmaceuticals in on-site sewage effluent and ground water, western Montana. Groundwater, 45(3), 263–271.

    Article  CAS  Google Scholar 

  • González, S., Barceló, D., & Petrovic, M. (2007). Advanced liquid chromatography-mass spectrometry (LC-MS) methods applied to wastewater removal and the fate of surfactants in the environment. TrAC Trends in Analytical Chemistry, 26(2), 116–124.

    Google Scholar 

  • Gottschall, N., Topp, E., Metcalfe, C., Edwards, M., Payne, M., Kleywegt, S.,.. & Lapen, D. R. (2012). Pharmaceutical and personal care products in groundwater, subsurface drainage, soil, and wheat grain, following a high single application of municipal biosolids to a field. Chemosphere, 87(2), 194–203.

    Article  CAS  Google Scholar 

  • Grice, H. C., & Goldsmith, L. A. (2000). Sucralose-an overview of the toxicity data. Food and Chemical Toxicology, 38(suppl 2).

    Google Scholar 

  • Grossberger, A., Hadar, Y., Borch, T., & Chefetz, B. (2014). Biodegradability of pharmaceutical compounds in agricultural soils irrigated with treated wastewater. Environmental pollution, 185, 168–177.

    Article  CAS  Google Scholar 

  • Gurr, C. J., & Reinhard, M. (2006). Harnessing natural attenuation of pharmaceuticals and hormones in rivers.

    Google Scholar 

  • Halling-Sørensen, B. N. N. S., Nielsen, S. N., Lanzky, P. F., Ingerslev, F., Lützhøft, H. H., & Jørgensen, S. E. (1998). Occurrence, fate and effects of pharmaceutical substances in the environment-A review. Chemosphere, 36(2), 357–393.

    Article  Google Scholar 

  • Hamscher, G., & Hartung, J. (2008). Veterinary antibiotics in dust: sources, environmental concentrations, and possible health hazards. In Pharmaceuticals in the Environment (pp. 95–102). Springer, Berlin, Heidelberg.

    Chapter  Google Scholar 

  • Harada, K., Saito, N., Sasaki, K., Inoue, K., & Koizumi, A. (2003). Perfluorooctane sulfonate contamination of drinking water in the Tama River, Japan: estimated effects on resident serum levels. Bulletin of environmental contamination and toxicology, 71(1), 0031–0036.

    Article  CAS  Google Scholar 

  • Hass, U., Duennbier, U., & Massmann, G. (2012). Occurrence and distribution of psychoactive compounds and their metabolites in the urban water cycle of Berlin (Germany). Water Research, 46(18), 6013–6022.

    Article  CAS  Google Scholar 

  • Heberer, T. (2002a). Occurrence, fate, and assessment of polycyclic musk residues in the aquatic environment of urban areas—a review. Acta hydrochimica et hydrobiologica, 30(5–6), 227–243.

    Article  Google Scholar 

  • Heberer, T. (2002b). Tracking persistent pharmaceutical residues from municipal sewage to drinking water. Journal of hydrology, 266(3–4), 175–189.

    Article  CAS  Google Scholar 

  • Heberer, T., Mechlinski, A., Fanck, B., Knappe, A., Massmann, G., Pekdeger, A., & Fritz, B. (2004). Field studies on the fate and transport of pharmaceutical residues in bank filtration. Groundwater Monitoring & Remediation, 24(2), 70–77.

    Article  CAS  Google Scholar 

  • Hilton, M. J., Thomas, K. V., & Ashton, D. (2003). Targeted monitoring programme for pharmaceuticals in the aquatic environment. Bristol: Environment agency.

    Google Scholar 

  • H-J. Stan et al.,“Occurrence of clofibric acid in the aquatic system - is the use of human medical care the source of the contamination of surface, ground and drinking water?,” Vom Wasser, vol 83, pp.57–68, 1994

    Google Scholar 

  • Horii, Y., Reiner, J. L., Loganathan, B. G., Kumar, K. S., Sajwan, K., & Kannan, K. (2007). Occurrence and fate of polycyclic musks in wastewater treatment plants in Kentucky and Georgia, USA. Chemosphere, 68(11), 2011–2020.

    Article  CAS  Google Scholar 

  • Houtman, C. J. (2010). Emerging contaminants in surface waters and their relevance for the production of drinking water in Europe. Journal of Integrative Environmental Sciences, 7(4), 271–295.

    Article  Google Scholar 

  • Hu, X., Zhou, Q., & Luo, Y. (2010). Occurrence and source analysis of typical veterinary antibiotics in manure, soil, vegetables and groundwater from organic vegetable bases, northern China. Environmental Pollution, 158(9), 2992–2998.

    Article  CAS  Google Scholar 

  • Huschek, G., Hansen, P. D., Maurer, H. H., Krengel, D., & Kayser, A. (2004). Environmental risk assessment of medicinal products for human use according to European Commission recommendations. Environmental Toxicology: An International Journal, 19(3), 226–240.

    Article  CAS  Google Scholar 

  • Jeon, H. K., Chung, Y., & Ryu, J. C. (2006). Simultaneous determination of benzophenone-type UV filters in water and soil by gas chromatography–mass spectrometry. Journal of Chromatography A, 1131(1–2), 192–202.

    Article  CAS  Google Scholar 

  • Jim, T. Y., Bouwer, E. J., & Coelhan, M. (2006). Occurrence and biodegradability studies of selected pharmaceuticals and personal care products in sewage effluent. Agricultural water management, 86(1–2), 72–80.

    Google Scholar 

  • Jobling, S., Reynolds, T., White, R., Parker, M. G., & Sumpter, J. P. (1995). A variety of environmentally persistent chemicals, including some phthalate plasticizers, are weakly estrogenic. Environmental health perspectives, 103(6), 582–587.

    Article  CAS  Google Scholar 

  • Johnson, A. C., Belfroid, A., & Di Corcia, A. (2000). Estimating steroid oestrogen inputs into activated sludge treatment works and observations on their removal from the effluent. Science of the Total Environment, 256(2–3), 163–173.

    Article  CAS  Google Scholar 

  • Johnson, A. C., Hughes, C. D., Williams, R. J., & Chilton, P. J. (1998). Potential for aerobic isoproturon biodegradation and sorption in the unsaturated and saturated zones of a chalk aquifer. Journal of Contaminant Hydrology, 30(3–4), 281–297.

    Article  CAS  Google Scholar 

  • Johnson, A. C., Jürgens, M. D., Williams, R. J., Kümmerer, K., Kortenkamp, A., & Sumpter, J. P. (2008). Do cytotoxic chemotherapy drugs discharged into rivers pose a risk to the environment and human health? An overview and UK case study. Journal of Hydrology, 348(1–2), 167–175.

    Article  CAS  Google Scholar 

  • Jones, O. A. H., Voulvoulis, N., & Lester, J. N. (2002). Aquatic environmental assessment of the top 25 English prescription pharmaceuticals. Water research, 36(20), 5013–5022.

    Article  CAS  Google Scholar 

  • Jurado, A., López-Serna, R., Vázquez-Suné, E., Carrera, J., Pujades, E., Petrovic, M., & Barceló, D. (2014). Occurrence of carbamazepine and five metabolites in an urban aquifer. Chemosphere, 115, 47–53.

    Article  CAS  Google Scholar 

  • Karnjanapiboonwong, A., Morse, A. N., Maul, J. D., & Anderson, T. A. (2010). Sorption of estrogens, triclosan, and caffeine in a sandy loam and a silt loam soil. Journal of Soils and Sediments, 10(7), 1300–1307.

    Article  CAS  Google Scholar 

  • Kasprzyk-Hordern, B., Dinsdale, R. M., & Guwy, A. J. (2008). The occurrence of pharmaceuticals, personal care products, endocrine disruptors and illicit drugs in surface water in South Wales, UK. Water research, 42(13), 3498–3518.

    Article  CAS  Google Scholar 

  • Katz, B. G., Griffin, D. W., & Davis, J. H. (2009). Groundwater quality impacts from the land application of treated municipal wastewater in a large karstic spring basin: chemical and microbiological indicators. Science of the Total Environment, 407(8), 2872–2886.]

    Article  CAS  Google Scholar 

  • Kavanaugh, M. C. (2003). Unregulated and emerging chemical contaminants: technical and institutional challenges. Proceedings of the water environment federation, 2003(12), 1–19.

    Article  Google Scholar 

  • Kim, K. R., Owens, G., Kwon, S. I., So, K. H., Lee, D. B., & Ok, Y. S. (2011). Occurrence and environmental fate of veterinary antibiotics in the terrestrial environment. Water, Air, & Soil Pollution, 214(1), 163–174.

    Article  CAS  Google Scholar 

  • Knee, K. L., Gossett, R., Boehm, A. B., & Paytan, A. (2010). Caffeine and agricultural pesticide concentrations in surface water and groundwater on the north shore of Kauai (Hawaii, USA). Marine Pollution Bulletin, 60(8), 1376–1382.

    Article  CAS  Google Scholar 

  • Kolpin, D. W., Barbash, J. E., & Gilliom, R. J. (1998). Occurrence of pesticides in shallow groundwater of the United States: Initial results from the National Water-Quality Assessment Program. Environmental Science & Technology, 32(5), 558–566.

    Article  CAS  Google Scholar 

  • Kolpin, D. W., Schnoebelen, D. J., & Thurman, E. M. (2004). Degradates provide insight to spatial and temporal trends of herbicides in ground water. Groundwater, 42(4), 601–608.

    Article  CAS  Google Scholar 

  • Kolpin, D. W., Thurman, E. M., & Linhart, S. M. (2000). Finding minimal herbicide concentrations in ground water? Try looking for their degradates. Science of the Total Environment, 248(2–3), 115–122.

    Article  CAS  Google Scholar 

  • Kosjek, T., Andersen, H. R., Kompare, B., Ledin, A., & Heath, E. (2009). Fate of carbamazepine during water treatment. Environmental science & technology, 43(16), 6256–6261.

    Article  CAS  Google Scholar 

  • Kümmerer, K. (2009). The presence of pharmaceuticals in the environment due to human use–present knowledge and future challenges. Journal of environmental management, 90(8), 2354–2366.

    Google Scholar 

  • Kuroda, K., Murakami, M., Oguma, K., Muramatsu, Y., Takada, H., & Takizawa, S. (2012). Assessment of groundwater pollution in Tokyo using PPCPs as sewage markers. Environmental science & technology, 46(3), 1455–1464.

    Article  CAS  Google Scholar 

  • Lapworth, D. J., & Gooddy, D. C. (2006). Source and persistence of pesticides in a semi-confined chalk aquifer of southeast England. Environmental Pollution, 144(3), 1031–1044.

    Article  CAS  Google Scholar 

  • Lapworth, D. J., Baran, N., Stuart, M. E., & Ward, R. S. (2012). Emerging organic contaminants in groundwater: a review of sources, fate and occurrence. Environmental pollution, 163, 287–303.

    Article  CAS  Google Scholar 

  • Lapworth, D. J., Gooddy, D. C., Allen, D., & Old, G. H. (2009). Understanding groundwater, surface water, and hyporheic zone biogeochemical processes in a Chalk catchment using fluorescence properties of dissolved and colloidal organic matter. Journal of Geophysical Research: Biogeosciences, 114(G3).

    Google Scholar 

  • Lara-Martín, P. A., Li, X., Bopp, R. F., & Brownawell, B. J. (2010). Occurrence of alkyltrimethylammonium compounds in urban estuarine sediments: behentrimonium as a new emerging contaminant. Environmental science & technology, 44(19), 7569–7575.

    Article  Google Scholar 

  • Laws, B. V., Dickenson, E. R., Johnson, T. A., Snyder, S. A., & Drewes, J. E. (2011). Attenuation of contaminants of emerging concern during surface-spreading aquifer recharge. Science of the Total Environment, 409(6), 1087–1094.

    Article  CAS  Google Scholar 

  • Lewandowski, J., Putschew, A., Schwesig, D., Neumann, C., & Radke, M. (2011). Fate of organic micropollutants in the hyporheic zone of a eutrophic lowland stream: Results of a preliminary field study. Science of the Total Environment, 409(10), 1824–1835.

    Article  CAS  Google Scholar 

  • Lin, K., & Gan, J. (2011). Sorption and degradation of wastewater-associated non-steroidal anti-inflammatory drugs and antibiotics in soils. Chemosphere, 83(3), 240–246.

    Article  CAS  Google Scholar 

  • Lindsey, M. E., Meyer, M., & Thurman, E. M. (2001). Analysis of trace levels of sulfonamide and tetracycline antimicrobials in groundwater and surface water using solid-phase extraction and liquid chromatography/mass spectrometry. Analytical chemistry, 73(19), 4640–4646.

    Article  CAS  Google Scholar 

  • Lindström, A., Buerge, I. J., Poiger, T., Bergqvist, P. A., Müller, M. D., & Buser, H. R. (2002). Occurrence and environmental behavior of the bactericide triclosan and its methyl derivative in surface waters and in wastewater. Environmental science & technology, 36(11), 2322–2329.

    Article  Google Scholar 

  • Liu, Z. H., Kanjo, Y., & Mizutani, S. (2010). A review of phytoestrogens: their occurrence and fate in the environment. Water research, 44(2), 567–577.

    Article  CAS  Google Scholar 

  • Loftin, K. A., Adams, C. D., Meyer, M. T., & Surampalli, R. (2008). Effects of ionic strength, temperature, and pH on degradation of selected antibiotics. Journal of environmental quality, 37(2), 378–386.

    Article  CAS  Google Scholar 

  • Loos, R., Locoro, G., Comero, S., Contini, S., Schwesig, D., Werres, F.,.. & Gawlik, B. M. (2010). Pan-European survey on the occurrence of selected polar organic persistent pollutants in ground water. Water research, 44(14), 4115–4126.

    Article  CAS  Google Scholar 

  • López-Serna, R., Jurado, A., Vázquez-Suñé, E., Carrera, J., Petrović, M., & Barceló, D. (2013). Occurrence of 95 pharmaceuticals and transformation products in urban groundwaters underlying the metropolis of Barcelona, Spain. Environmental Pollution, 174, 305–315.

    Article  Google Scholar 

  • Martínez, J. L. (2008). Antibiotics and antibiotic resistance genes in natural environments. Science, 321(5887), 365–367.

    Article  Google Scholar 

  • McArthur, J. V., & Tuckfield, R. C. (2000). Spatial patterns in antibiotic resistance among stream bacteria: effects of industrial pollution. Applied and Environmental Microbiology, 66(9), 3722–3726.

    Article  CAS  Google Scholar 

  • Mezcua, M., Gómez, M. J., Ferrer, I., Aguera, A., Hernando, M. D., & Fernández-Alba, A. R. (2004). Evidence of 2, 7/2, 8-dibenzodichloro-p-dioxin as a photodegradation product of triclosan in water and wastewater samples. Analytica Chimica Acta, 524(1–2), 241–247.

    Article  CAS  Google Scholar 

  • Miller, K. J., & Meek, J. (2006). Helena Valley ground water: pharmaceuticals, personal care products, endocrine disruptors (PPCPs), and microbial indicators of fecal contamination. Helena, MT: Montana Department of Environmental Quality.

    Google Scholar 

  • Missimer, T. M., Drewes, J. E., Maliva, R. G., & Amy, G. (2011). Aquifer recharge and recovery: groundwater recharge systems for treatment, storage, and water reclamation. Groundwater, 49(6), 771–771.

    Article  CAS  Google Scholar 

  • Mitch, W. A., Sharp, J. O., Trussell, R. R., Valentine, R. L., Alvarez-Cohen, L., & Sedlak, D. L. (2003). N-nitrosodimethylamine (NDMA) as a drinking water contaminant: a review. Environmental engineering science, 20(5), 389–404.

    Article  CAS  Google Scholar 

  • Moldovan, Z. (2006). Occurrences of pharmaceutical and personal care products as micropollutants in rivers from Romania. Chemosphere, 64(11), 1808–1817.

    Article  CAS  Google Scholar 

  • Montgomery-Brown, J., & Reinhard, M. (2003). Occurrence and behavior of alkylphenol polyethoxylates in the environment. Environmental engineering science, 20(5), 471–486.

    Article  CAS  Google Scholar 

  • Moran, M. J., Zogorski, J. S., & Squillace, P. J. (2005). MTBE and gasoline hydrocarbons in ground water of the United States. Groundwater, 43(4), 615–627.

    Article  CAS  Google Scholar 

  • Moran, M. J., Zogorski, J. S., & Squillace, P. J. (2007). Chlorinated solvents in groundwater of the United States. Environmental science & technology, 41(1), 74–81.

    Article  CAS  Google Scholar 

  • Morasch, B. (2013). Occurrence and dynamics of micropollutants in a karst aquifer. Environmental pollution, 173, 133–137.

    Article  CAS  Google Scholar 

  • Mueller, B., Scheytt, T., & Asbrand, M. (2011). Quantification of exchange rates between groundwater and surface water applying pharmaceutical compounds–the Nuthegraban case. In Geophysical Research Abstracts (Vol. 13, pp. EGU2011-2257).

    Google Scholar 

  • Murray, K. E., Thomas, S. M., & Bodour, A. A. (2010). Prioritizing research for trace pollutants and emerging contaminants in the freshwater environment. Environmental pollution, 158(12), 3462–3471.

    Article  CAS  Google Scholar 

  • Musolff, A., Leschik, S., Möder, M., Strauch, G., Reinstorf, F., & Schirmer, M. (2009). Temporal and spatial patterns of micropollutants in urban receiving waters. Environmental pollution, 157(11), 3069–3077.

    Article  CAS  Google Scholar 

  • Musson, S. E., & Townsend, T. G. (2009). Pharmaceutical compound content of municipal solid waste. Journal of Hazardous Materials, 162(2–3), 730–735.

    Article  CAS  Google Scholar 

  • Nikolaou, A., Meric, S., & Fatta, D. (2007). Occurrence patterns of pharmaceuticals in water and wastewater environments. Analytical and bioanalytical chemistry, 387(4), 1225–1234.

    Article  CAS  Google Scholar 

  • Osenbrück, K., Gläser, H. R., Knöller, K., Weise, S. M., Möder, M., Wennrich, R.,.. & Strauch, G. (2007). Sources and transport of selected organic micropollutants in urban groundwater underlying the city of Halle (Saale), Germany. Water research, 41(15), 3259–3270.

    Article  Google Scholar 

  • Pal, A., Gin, K. Y. H., Lin, A. Y. C., & Reinhard, M. (2010). Impacts of emerging organic contaminants on freshwater resources: review of recent occurrences, sources, fate and effects. Science of the total environment, 408(24), 6062–6069.

    Article  CAS  Google Scholar 

  • Peng, X., Ou, W., Wang, C., Wang, Z., Huang, Q., Jin, J., & Tan, J. (2014). Occurrence and ecological potential of pharmaceuticals and personal care products in groundwater and reservoirs in the vicinity of municipal landfills in China. Science of the Total Environment, 490, 889–898.

    Article  CAS  Google Scholar 

  • Pérez, S., & Barceló, D. (2007). Fate and occurrence of X-ray contrast media in the environment. Analytical and bioanalytical chemistry, 387(4), 1235–1246.

    Article  Google Scholar 

  • Petrovic, M., & Barceló, D. (2006). Application of liquid chromatography/quadrupole time-of-flight mass spectrometry (LC-QqTOF-MS) in the environmental analysis. Journal of mass spectrometry, 41(10), 1259–1267.

    Article  CAS  Google Scholar 

  • Petrović, M., Škrbić, B., Živančev, J., Ferrando-Climent, L., & Barcelo, D. (2014). Determination of 81 pharmaceutical drugs by high-performance liquid chromatography coupled to mass spectrometry with hybrid triple quadrupole–linear ion trap in different types of water in Serbia. Science of the total environment, 468, 415–428.

    Article  Google Scholar 

  • Pham, T. P. T., Cho, C. W., & Yun, Y. S. (2010). Environmental fate and toxicity of ionic liquids: a review. Water research, 44(2), 352–372.

    Article  CAS  Google Scholar 

  • Phillips, P. J., Schubert, C., Argue, D., Fisher, I., Furlong, E. T., Foreman, W.,.. & Chalmers, A. (2015). Concentrations of hormones, pharmaceuticals and other micropollutants in groundwater affected by septic systems in New England and New York. Science of the Total Environment, 512, 43–54.

    Article  Google Scholar 

  • Poynton, H. C., & Vulpe, C. D. (2009). Ecotoxicogenomics: emerging technologies for emerging contaminants 1. JAWRA Journal of the American Water Resources Association, 45(1), 83–96.

    Article  CAS  Google Scholar 

  • Rabiet, M., Togola, A., Brissaud, F., Seidel, J. L., Budzinski, H., & Elbaz-Poulichet, F. (2006). Consequences of treated water recycling as regards pharmaceuticals and drugs in surface and ground waters of a medium-sized Mediterranean catchment. Environmental science & technology, 40(17), 5282–5288.

    Article  CAS  Google Scholar 

  • Radović, T., Grujić, S., Petković, A., Dimkić, M., & Laušević, M. (2014). Determination of pharmaceuticals and pesticides in river sediments and corresponding surface and groundwater in the Danube River and tributaries in Serbia. Environmental Monitoring and Assessment, 187(1), 1–17.

    Google Scholar 

  • Rahman, F., Langford, K. H., Scrimshaw, M. D., & Lester, J. N. (2001). Polybrominated diphenyl ether (PBDE) flame retardants. Science of the Total Environment, 275(1–3), 1–17.

    Article  CAS  Google Scholar 

  • Ricart, M., Guasch, H., Alberch, M., Barceló, D., Bonnineau, C., Geiszinger, A.,.. & Sabater, S. (2010). Triclosan persistence through wastewater treatment plants and its potential toxic effects on river biofilms. Aquatic Toxicology, 100(4), 346–353.

    Article  CAS  Google Scholar 

  • Richardson, M. L., & Bowron, J. M. (1985). The fate of pharmaceutical chemicals in the aquatic environment. Journal of Pharmacy and Pharmacology, 37(1), 1–12.

    Article  CAS  Google Scholar 

  • Richardson, S. D., & Ternes, T. A. (2011). Water analysis: emerging contaminants and current issues. Analytical chemistry, 83(12), 4614–4648.

    Article  CAS  Google Scholar 

  • S.D. Richardson, “Water analysis: emerging contaminants and current issues,” Analytical Chemistry, vol. 79, pp. 4295–324, 2007.

    Google Scholar 

  • Saito, N., Sasaki, K., Nakatome, K., Harada, K., Yoshinaga, T., & Koizumi, A. (2003). Perfluorooctane sulfonate concentrations in surface water in Japan. Archives of Environmental Contamination and Toxicology, 45(2), 149–158.

    Article  CAS  Google Scholar 

  • Salgado, R., Marques, R., Noronha, J. P., Carvalho, G., Oehmen, A., & Reis, M. A. M. (2012). Assessing the removal of pharmaceuticals and personal care products in a full-scale activated sludge plant. Environmental Science and Pollution Research, 19(5), 1818–1827.

    Article  CAS  Google Scholar 

  • Sarmah, A. K., Meyer, M. T., & Boxall, A. B. (2006). A global perspective on the use, sales, exposure pathways, occurrence, fate and effects of veterinary antibiotics (VAs) in the environment. Chemosphere, 65(5), 725–759.

    Article  CAS  Google Scholar 

  • Schaider, L. A., Rudel, R. A., Ackerman, J. M., Dunagan, S. C., & Brody, J. G. (2014). Pharmaceuticals, perfluorosurfactants, and other organic wastewater compounds in public drinking water wells in a shallow sand and gravel aquifer. Science of the Total Environment, 468, 384–393.

    Article  Google Scholar 

  • Schwarzenbach, R. P., Escher, B. I., Fenner, K., Hofstetter, T. B., Johnson, C. A., Von Gunten, U., & Wehrli, B. (2006). The challenge of micropollutants in aquatic systems. Science, 313(5790), 1072–1077.

    Article  CAS  Google Scholar 

  • Seiler, R. L., Zaugg, S. D., Thomas, J. M., & Howcroft, D. L. (1999). Caffeine and pharmaceuticals as indicators of waste water contamination in wells. Groundwater, 37(3), 405–410.

    Article  CAS  Google Scholar 

  • Singer, A. C., Nunn, M. A., Gould, E. A., & Johnson, A. C. (2007). Potential risks associated with the proposed widespread use of Tamiflu. Environmental Health Perspectives, 115(1), 102–106.

    Article  CAS  Google Scholar 

  • Slack, R. J., Gronow, J. R., & Voulvoulis, N. (2005). Household hazardous waste in municipal landfills: contaminants in leachate. Science of the total environment, 337(1–3), 119–137.

    Article  CAS  Google Scholar 

  • Soares, A., Guieysse, B., Jefferson, B., Cartmell, E., & Lester, J. N. (2008). Nonylphenol in the environment: a critical review on occurrence, fate, toxicity and treatment in wastewaters. Environment international, 34(7), 1033–1049.

    Article  CAS  Google Scholar 

  • Spliid, N. H., & Køppen, B. (1998). Occurrence of pesticides in Danish shallow ground water. Chemosphere, 37(7), 1307–1316.

    Article  CAS  Google Scholar 

  • Stan, H. J., & Linkerhägner, M. (1992). Identizierung von 2-(4-Chlorphenoxy)-2-methyl-propionsäure in Grundwasser mittels Kapillar-Gaschromatographie mit Atomemessionsdetektion und Massenspektrometrie. Vom Wasser, 79, 75–88.

    CAS  Google Scholar 

  • Standley, L. J., Rudel, R. A., Swartz, C. H., Attfield, K. R., Christian, J., Erickson, M., & Brody, J. G. (2008). Wastewater-contaminated groundwater as a source of endogenous hormones and pharmaceuticals to surface water ecosystems. Environmental Toxicology and Chemistry: An International Journal, 27(12), 2457–2468.

    Article  CAS  Google Scholar 

  • Stuart, M., & Lapworth, D. (2013). Emerging organic contaminants in groundwater. In Smart Sensors for Real-Time Water Quality Monitoring (pp. 259–284). Springer, Berlin, Heidelberg.

    Book  Google Scholar 

  • Stuart, M., Lapworth, D., Crane, E., & Hart, A. (2012). Review of risk from potential emerging contaminants in UK groundwater. Science of the Total Environment, 416, 1–21.

    Article  CAS  Google Scholar 

  • Swartz, C. H., Reddy, S., Benotti, M. J., Yin, H., Barber, L. B., Brownawell, B. J., & Rudel, R. A. (2006). Steroid estrogens, nonylphenol ethoxylate metabolites, and other wastewater contaminants in groundwater affected by a residential septic system on Cape Cod, MA. Environmental science & technology, 40(16), 4894–4902.

    Google Scholar 

  • Tappe, W., Groeneweg, J., & Jantsch, B. (2002). Diffuse atrazine pollution in German aquifers. Biodegradation, 13(1), 3–10.

    Article  CAS  Google Scholar 

  • Teijón, G., Candela, L., Sagristá, E., & Hidalgo, M. (2013). Naproxen adsorption-desorption in a sandy aquifer matrix: characterisation of hysteretic behavior at two different temperature values. Soil and Sediment Contamination: An International Journal, 22(6), 641–653.

    Article  Google Scholar 

  • Teijon, G., Candela, L., Tamoh, K., Molina-Díaz, A., & Fernández-Alba, A. R. (2010). Occurrence of emerging contaminants, priority substances (2008/105/CE) and heavy metals in treated wastewater and groundwater at Depurbaix facility (Barcelona, Spain). Science of the Total Environment, 408(17), 3584–3595.

    Article  CAS  Google Scholar 

  • Tong, L., Huang, S., Wang, Y., Liu, H., & Li, M. (2014). Occurrence of antibiotics in the aquatic environment of Jianghan Plain, central China. Science of the Total Environment, 497, 180–187.

    Article  Google Scholar 

  • Tran, N. H., Li, J., Hu, J., & Ong, S. L. (2014). Occurrence and suitability of pharmaceuticals and personal care products as molecular markers for raw wastewater contamination in surface water and groundwater. Environmental Science and Pollution Research, 21(6), 4727–4740.

    Article  CAS  Google Scholar 

  • USEPA, C. (2009). Water: Contaminant Candidate List 3.

    Google Scholar 

  • Van Stempvoort, D. R., Roy, J. W., Brown, S. J., & Bickerton, G. (2011). Artificial sweeteners as potential tracers in groundwater in urban environments. Journal of Hydrology, 401(1–2), 126–133.

    Article  Google Scholar 

  • Verliefde, A., Cornelissen, E., Amy, G., Van der Bruggen, B., & Van Dijk, H. (2007). Priority organic micropollutants in water sources in Flanders and the Netherlands and assessment of removal possibilities with nanofiltration. Environmental pollution, 146(1), 281–289.

    Article  CAS  Google Scholar 

  • Voutsa, D., Hartmann, P., Schaffner, C., & Giger, W. (2006). Benzotriazoles, alkylphenols and bisphenol A in municipal wastewaters and in the Glatt River, Switzerland. Environmental Science and Pollution Research, 13(5), 333–341.

    Article  CAS  Google Scholar 

  • Vulliet, E., & Cren-Olivé, C. (2011). Screening of pharmaceuticals and hormones at the regional scale, in surface and groundwaters intended to human consumption. Environmental pollution, 159(10), 2929–2934.

    Article  CAS  Google Scholar 

  • Water UK (2011). “Metaldehyde briefing” 2011. Available: http://www.water.org.uk/home/policy/positions/metaldehyde-briefing

  • Watkinson, A. J., Murby, E. J., Kolpin, D. W., & Costanzo, S. D. (2009). The occurrence of antibiotics in an urban watershed: from wastewater to drinking water. Science of the total environment, 407(8), 2711–2723.

    Article  CAS  Google Scholar 

  • Weil, E. D., Zhu, W., Patel, N., & Mukhopadhyay, S. M. (1996). A systems approach to flame retardancy and comments on modes of action. Polymer Degradation and Stability, 54(2–3), 125–136.

    Article  CAS  Google Scholar 

  • Wolf, L., Zwiener, C., & Zemann, M. (2012). Tracking artificial sweeteners and pharmaceuticals introduced into urban groundwater by leaking sewer networks. Science of the Total Environment, 430, 8–19.

    Article  CAS  Google Scholar 

  • Yu, Y., Liu, Y., & Wu, L. (2013). Sorption and degradation of pharmaceuticals and personal care products (PPCPs) in soils. Environmental Science and Pollution Research, 20(6), 4261–4267.

    Article  CAS  Google Scholar 

  • Yuan, Q., Snow, D. D., & Bartelt-Hunt, S. L. (2013). Potential water quality impacts originating from land burial of cattle carcasses. Science of the Total Environment, 456, 246–253.

    Article  Google Scholar 

  • Zanella, R., Adaime, M. B., Peixoto, S. C., Friggi, C. D. A., Prestes, O. D., Machado, S. L.,.. & Primel, E. G. (2011). Herbicides persistence in rice paddy water in southern Brazil. Herbicides-mechanisms and mode of action, 369–382.

    Google Scholar 

  • Zemann, M., Wolf, L., Grimmeisen, F., Tiehm, A., Klinger, J., Hötzl, H., & Goldscheider, N. (2015). Tracking changing X-ray contrast media application to an urban-influenced karst aquifer in the Wadi Shueib, Jordan. Environmental Pollution, 198, 133–143.

    Article  CAS  Google Scholar 

  • Zhang, C. L. Wang, Y., & Wang, F. A. (2007). Microbial Degradation of Sulfonamides in Soils [J]. Journal of Agro-Environment Science, 5.

    Google Scholar 

  • Zhang, Y. L., Lin, S. S., Dai, C. M., Shi, L., & Zhou, X. F. (2014). Sorption–desorption and transport of trimethoprim and sulfonamide antibiotics in agricultural soil: effect of soil type, dissolved organic matter, and pH. Environmental Science and Pollution Research, 21(9), 5827–5835.

    Article  CAS  Google Scholar 

  • Zhou, L. J., Ying, G. G., Liu, S., Zhao, J. L., Chen, F., Zhang, R. Q.,.. & Zhang, Q. Q. (2012). Simultaneous determination of human and veterinary antibiotics in various environmental matrices by rapid resolution liquid chromatography–electrospray ionization tandem mass spectrometry. Journal of Chromatography A, 1244, 123–138.

    Article  CAS  Google Scholar 

  • Zuccato, E., Calamari, D., Natangelo, M., & Fanelli, R. (2000). Presence of therapeutic drugs in the environment. The lancet, 355(9217), 1789–1790.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bashir Ahmad .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ahmad, B., Imran, M. (2022). Emerging Organic Contaminants, Pharmaceuticals and Personal Care Products (PPCPs): A Threat to Water Quality. In: Ahmed, T., Hashmi, M.Z. (eds) Hazardous Environmental Micro-pollutants, Health Impacts and Allied Treatment Technologies. Emerging Contaminants and Associated Treatment Technologies. Springer, Cham. https://doi.org/10.1007/978-3-030-96523-5_6

Download citation

Publish with us

Policies and ethics