Skip to main content

Fast and Accurate Predictions of Total Energy for Solid Solution Alloys with Graph Convolutional Neural Networks

  • Conference paper
  • First Online:
Driving Scientific and Engineering Discoveries Through the Integration of Experiment, Big Data, and Modeling and Simulation (SMC 2021)

Abstract

We use graph convolutional neural networks (GCNNs) to produce fast and accurate predictions of the total energy of solid solution binary alloys. GCNNs allow us to abstract the lattice structure of a solid material as a graph, whereby atoms are modeled as nodes and metallic bonds as edges. This representation naturally incorporates information about the structure of the material, thereby eliminating the need for computationally expensive data pre-processing which would be required with standard neural network (NN) approaches. We train GCNNs on ab-initio density functional theory (DFT) for copper-gold (CuAu) and iron-platinum (FePt) data that has been generated by running the LSMS-3 code, which implements a locally self-consistent multiple scattering method, on OLCF supercomputers Titan and Summit. GCNN outperforms the ab-initio DFT simulation by orders of magnitude in terms of computational time to produce the estimate of the total energy for a given atomic configuration of the lattice structure. We compare the predictive performance of GCNN models against a standard NN such as dense feedforward multi-layer perceptron (MLP) by using the root-mean-squared errors to quantify the predictive quality of the deep learning (DL) models. We find that the attainable accuracy of GCNNs is at least an order of magnitude better than that of the MLP.

This manuscript has been authored in part by UT-Battelle, LLC, under contract DE-AC05-00OR22725 with the US Department of Energy (DOE). The US government retains and the publisher, by accepting the article for publication, acknowledges that the US government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this manuscript, or allow others to do so, for US government purposes. DOE will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan (http://energy.gov/downloads/doe-public-access-plan).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Curtarolo, S., et al.: AFLOW: an automatic framework for high-throughput materials discovery. Comput. Mater. Sci. 58, 218–226 (2012)

    Article  Google Scholar 

  2. Jain, A., et al.: Commentary: the materials project: a materials genome approach to accelerating materials innovation. APL Mater. 1(1), 1–11 (2013)

    Article  Google Scholar 

  3. Saal, J.E., Kirklin, S., Aykol, M., Meredig, B., Wolverton, C.: Materials design and discovery with high-throughput density functional theory: the Open Quantum Materials Database (OQMD). JOM 65(11), 1501–1509 (2013). https://doi.org/10.1007/s11837-013-0755-4

    Article  Google Scholar 

  4. Nityananda, R., Hohenberg, P., Kohn, W.: Inhomogeneous electron gas. Resonance 22(8), 809–811 (2017). https://doi.org/10.1007/s12045-017-0529-3

    Article  Google Scholar 

  5. Kohn, W., Sham, L.J.: Self-consistent equations including exchange and correlation effects. Phys. Rev. 140, A1133–A1138 (1965)

    Article  MathSciNet  Google Scholar 

  6. Nightingale, M.P., Umrigar., J.C.: Self-Consistent Equations Including Exchange and Correlation Effects. Springer (1999)

    Google Scholar 

  7. Hammond, B.L., Lester, W.A., Reynolds, P.J.: Monte Carlo Methods in Ab Initio Quantum Chemistry. World Scientific, Singapore (1994)

    Book  Google Scholar 

  8. Car, R., Parrinello, M.: Unified approach for molecular dynamics and density-functional theory. Phys. Rev. Lett. 55, 2471–2474 (1985)

    Article  Google Scholar 

  9. Marx, D., Hutter, J.: Ab Initio Molecular Dynamics, Basic Theory and Advanced Methods. Cambridge University Press, New York (2012)

    Google Scholar 

  10. Aarons, J., Sarwar, M., Thompsett, D., Skylaris, C.K.: Perspective: methods for large-scale density functional calculations on metallic systems. J. Chem. Phys. 145(22), 220901 (2016)

    Article  Google Scholar 

  11. Sanchez, J.M., Ducastelle, F., Gratias, D.: Generalized cluster description of multicomponent systems. Phys. A Stat. Mech. Appl. 128, 334–350 (1984)

    Article  MathSciNet  Google Scholar 

  12. De Fontaine, D.: Cluster approach to order-disorder transformations in alloys. Phys. A Stat. Mech. Appl. 47, 33–176 (1994)

    Google Scholar 

  13. Levy, O., Hart, G.L.W., Curtarolo, S.: Uncovering compounds by synergy of cluster expansion and high-throughput methods. J. Am. Chem. Soc. 132(13), 4830–4833 (2010)

    Article  Google Scholar 

  14. Alder, B.J., Wainwright, T.E.: Phase transition for a hard sphere system. J. Chem. Phys. 27(5), 1208–1209 (1957)

    Article  Google Scholar 

  15. Rahman, A.: Correlations in the motion of atoms in liquid argon. Phys. Rev. 136(2A), A405–A411 (1964)

    Article  Google Scholar 

  16. Ercolessi, F., Adams, J.B.: Interatomic potentials from first-principles calculations: the force-matching method. Europhys. Lett. 26(8), 583–588 (1994)

    Article  Google Scholar 

  17. Brockherde, F., Vogt, L., Tuckerman, M.E., Burke, K., Müller, K.R.: Bypassing the Kohn-Sham equations with machine learning. Nat. Commun. 8(872), 1–10 (2017)

    Google Scholar 

  18. Wang, C., Tharval, A., Kitchin, J.R.: A density functional theory parameterised neural network model of zirconia. Mol. Simul. 44(8), 623–630 (2018)

    Article  Google Scholar 

  19. Sinitskiy, A.V., Pande, V.S.: Deep neural network computes electron densities and energies of a large set of organic molecules faster than density functional theory (DFT). https://arxiv.org/abs/1809.02723

  20. Custódio, C.A., Filletti, É.R., França, V.V.: Artificial neural networks for density-functional optimizations in fermionic systems. Sci. Rep. 9(1886), 1–7 (2019)

    Google Scholar 

  21. Ryczko, K., Strubbe, D., Tamblyn, I.: Deep learning and density functional theory. Phys. Rev. A 100, 022512 (2019)

    Article  Google Scholar 

  22. Behler, J., Parrinello, M.: Generalized neural-network representation of high-dimensional potential-energy surfaces. Phys. Rev. Lett. 98(14), 146401 (2007)

    Article  Google Scholar 

  23. Schütt, K., et al.: SchNet: a continuous-filter convolutional neural network for modeling quantum interactions. In: Guyon, I., et al. (eds.) Advances in Neural Information Processing Systems 30, pp. 991–1001. Curran Associates Inc. (2017)

    Google Scholar 

  24. Smith, J.S., Isayev, O., Roitberg, A.E.: ANI-1: an extensible neural network potential with DFT accuracy at force field computational cost. Chem. Sci. 8(4), 3192–3203 (2017)

    Article  Google Scholar 

  25. Zhang, L., Han, J., Wang, H., Car, R., Weinan, E.: Deep potential molecular dynamics: a scalable model with the accuracy of quantum mechanics. Phys. Rev. Lett. 120(14), 143001 (2018)

    Article  Google Scholar 

  26. Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The graph neural network model. IEEE Trans. Neural Netw. 20(1), 61–80 (2009)

    Article  Google Scholar 

  27. Defferrard, M., Bresson, X., Vandergheynst, P.: Convolutional neural networks on graphs with fast localized spectral filtering. In: Lee, D., Sugiyama, M., Luxburg, U., Guyon, I., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 29. Curran Associates Inc. (2016)

    Google Scholar 

  28. Xie, T., Grossman, J.C.: Crystal graph convolutional neural networks for an accurate and interpretable prediction of material properties. Phys. Rev. Lett. 120(14), 145301 (2018)

    Article  Google Scholar 

  29. Chen, C., Ye, W., Zuo, Y., Zheng, C., Ong, S.P.: Graph networks as a universal machine learning framework for molecules and crystals. Chem. Mater. 31(9), 3564–3572 (2019)

    Article  Google Scholar 

  30. Pasini, M.L., Eisenbach, M.: CuAu binary alloy with 32 atoms - LSMS-3 data, February 2021. https://doi.org/10.13139/OLCF/1765349

  31. Pasini, M.L., Eisenbach, M.: FePt binary alloy with 32 atoms - LSMS-3 data, February 2021. https://doi.org/10.13139/OLCF/1762742

  32. Murty, U.S.R., Bondy, J.A.: Graphs and subgraphs. In: Graph Theory with Applications. North-Holland

    Google Scholar 

  33. Xu, K., Hu, W., Leskovec, J., Jegelka, S.: How powerful are graph neural networks? arXiv:1810.00826 [cs, stat], February 2019

  34. Kipf, T.N., Welling, M.: Graph attention networks. arXiv:1609.02907 [cs, stat], February 2017. arXiv: 1710.10903

  35. Corso, G., Cavalleri, L., Beaini, D., Liò, P., Veličković., P.: Principal neighbourhood aggregation for graph nets. arXiv:2004.05718 [cs, stat], December 2020

  36. Hamilton, W.L.: Graph representation learning. Synth. Lect. Artif. Intell. Mach. Learn. 14(3), 1–159 (2020)

    MATH  Google Scholar 

  37. Paszke, A., et al.: PyTorch: an imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., d’ Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32, pp. 8024–8035. Curran Associates Inc. (2019)

    Google Scholar 

  38. Fey, M., Lenssen, J.E.: Fast graph representation learning with PyTorch geometric. In: ICLR Workshop on Representation Learning on Graphs and Manifolds (2019)

    Google Scholar 

  39. PyTorch Geometric. https://pytorch-geometric.readthedocs.io/en/latest/

  40. Pasini, M.L., Reeve, S.T., Zhang, P., Choi, J.Y.: HydraGNN. Comput. Softw. (2021). https://doi.org/10.11578/dc.20211019.2

  41. Liaw, R., Liang, E., Nishihara, R., Moritz, P., Gonzalez, J.E., Stoica, I.: Tune: a research platform for distributed model selection and training. arXiv preprint arXiv:1807.05118 (2018)

  42. Ray Tune: Hyperparameter Optimization Framework. https://docs.ray.io/en/latest/tune/index.html

  43. Eisenbach, M., Larkin, J., Lutjens, J., Rennich, S., Rogers, J.H.: GPU acceleration of the locally self-consistent multiple scattering code for first principles calculation of the ground state and statistical physics of materials. Comput. Phys. Commun. 211, 2–7 (2017)

    Article  Google Scholar 

  44. Wang, Y., Stocks, G.M., Shelton, W.A., Nicholson, D.M.C., Szotek, Z., Temmerman, W.M.: Order-N multiple scattering approach to electronic structure calculations. Phys. Rev. Lett. 75, 2867–2870 (1995)

    Article  Google Scholar 

  45. Yang, Y., et al.: Quantitative evaluation of an epitaxial silicon-germanium layer on silicon. Nature 542(7639), 75–79 (2017)

    Article  Google Scholar 

  46. Eisenbach, M., Li, Y.W., Odbadrakh, O.K., Pei, Z., Stocks, G.M., Yin, J.: LSMS. https://github.com/mstsuite/lsms

  47. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv:1412.6980 [cs], January 2017

  48. OLCF Supercomputer Titan. https://www.olcf.ornl.gov/for-users/system-user-guides/titan/

  49. OLCF Supercomputer Summit. https://www.olcf.ornl.gov/olcf-resources/compute-systems/summit/

Download references

Acknowledgements

Massimiliano Lupo Pasini thanks Dr. Vladimir Protopopescu for his valuable feedback in the preparation of this manuscript.

This work was supported in part by the Office of Science of the Department of Energy and by the Laboratory Directed Research and Development (LDRD) Program of Oak Ridge National Laboratory. This research is sponsored by the Artificial Intelligence Initiative as part of the Laboratory Directed Research and Development Program of Oak Ridge National Laboratory, managed by UT-Battelle, LLC, for the US Department of Energy under contract DE-AC05-00OR22725. This work used resources of the Oak Ridge Leadership Computing Facility, which is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC05-00OR22725.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Massimiliano Lupo Pasini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lupo Pasini, M., Burc̆ul, M., Reeve, S.T., Eisenbach, M., Perotto, S. (2022). Fast and Accurate Predictions of Total Energy for Solid Solution Alloys with Graph Convolutional Neural Networks. In: Nichols, J., et al. Driving Scientific and Engineering Discoveries Through the Integration of Experiment, Big Data, and Modeling and Simulation. SMC 2021. Communications in Computer and Information Science, vol 1512. Springer, Cham. https://doi.org/10.1007/978-3-030-96498-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-96498-6_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-96497-9

  • Online ISBN: 978-3-030-96498-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics