Skip to main content

Modern Solutions for Indoor Air Quality Management in Commercial and Residential Spaces

  • Chapter
  • First Online:
Integrating IoT and AI for Indoor Air Quality Assessment

Part of the book series: Internet of Things ((ITTCC))

Abstract

Indoor air pollutants in certain environments, such as a damp home or a low-ventilation office, are more concentrated indoors than outdoors. As people spend most of their time indoors, there is a high chance that they are exposed to indoor air pollution. This exposure might lead to adverse health outcomes such as allergies, infection, and respiratory diseases. Therefore, proper indoor environment management is crucial for promoting indoor air quality, consequently benefiting the health and well-being of occupants. In commercial spaces, a lot of people gather and perform various activities together, and higher concentrations of indoor air pollution are generated, which leads to accumulation of pollutants if proper management is not achieved, especially during the COVID-19 pandemic when biological pollutants (i.e., viral particle) can accumulate indoors due to poor ventilation environment. In residential spaces, indoor air quality may worsen due to activities such as cooking, painting, using personal care products, and washing. These activities generate indoor air pollution, thus affecting the health of occupants. In addition, poor air quality in microenvironments apparently affects sleep quality. This chapter proposes a concept of indoor air quality management in commercial and residential spaces including sources and control. Moreover, the management technologies have been summarized varying from a simple technique that can be handled by the occupants to a more complicated technique that requires more equipment and professional skill. The methods provided here can benefit the occupants, especially the occupants living in limited-space residences, such as apartment buildings in urban areas.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. NIOSH, Indoor Environmental Quality (2019). Available: https://www.cdc.gov/niosh/topics/indoorenv/default.html. Accessed: 26 July 2021

  2. P. Rogula-Kopiec, W. Rogula-Kozłowska, J.S. Pastuszka, B. Mathews, Air pollution of beauty salons by cosmetics from the analysis of suspensed particulate matter. Environ. Chem. Lett. 17(1), 551–558 (2019)

    Article  Google Scholar 

  3. K. Slezakova, C. Peixoto, M. Oliveira, C. Delerue-Matos, M.D.C. Pereira, S. Morais, Indoor particulate pollution in fitness centres with emphasis on ultrafine particles. Environ. Pollut. 233, 180–193 (2018)

    Article  Google Scholar 

  4. C. Mandin, M. Trantallidi, A. Cattaneo, N. Canha, V.G. Mihucz, T. Szigeti, et al., Assessment of indoor air quality in office buildings across Europe – The OFFICAIR study. Sci. Total Environ. 579, 169–178 (2017)

    Article  Google Scholar 

  5. A. Klinmalee, K. Srimongkol, N.T. Kim Oanh, Indoor air pollution levels in public buildings in Thailand and exposure assessment. Environ. Monit. Assess. 156(1), 581 (2008)

    Google Scholar 

  6. J. Wu, W. Weng, COVID-19 virus released from larynx might cause a higher exposure dose in indoor environment. Environ. Res. 199, 111361 (2021)

    Article  Google Scholar 

  7. K. Al Huraimel, M. Alhosani, S. Kunhabdulla, M.H. Stietiya, SARS-CoV-2 in the environment: Modes of transmission, early detection and potential role of pollutions. Sci. Total Environ. 744, 140946 (2020)

    Article  Google Scholar 

  8. H. Xu, Y. Li, B. Guinot, J. Wang, K. He, K.F. Ho, et al., Personal exposure of PM2.5 emitted from solid fuels combustion for household heating and cooking in rural Guanzhong Plain, Northwestern China. Atmos. Environ. 185, 196–206 (2018)

    Article  Google Scholar 

  9. D. Karottki, M. Spilak, M. Frederiksen, Z. Jovanovic Andersen, A. Madsen, M. Ketzel, et al., Indoor and outdoor exposure to ultrafine, fine and microbiologically derived particulate matter related to cardiovascular and respiratory effects in a panel of elderly urban citizens. Int. J. Environ. Res. Public Health 12(2), 1667 (2015)

    Article  Google Scholar 

  10. C. Huang, X. Wang, W. Liu, J. Cai, L. Shen, Z. Zou, et al., Household indoor air quality and its associations with childhood asthma in Shanghai, China: On-site inspected methods and preliminary results. Environ. Res. 151, 154–167 (2016)

    Article  Google Scholar 

  11. F. Wei, G. Nie, B. Zhou, L. Wang, Y. Ma, S. Peng, et al., Association between Chinese cooking oil fumes and sleep quality among a middle-aged Chinese population. Environ. Pollut. 227, 543–551 (2017)

    Article  Google Scholar 

  12. Y. Yoda, K. Tamura, M. Shima, Airborne endotoxin concentrations in indoor and outdoor particulate matter and their predictors in an urban city. Indoor Air 27(5), 955–964 (2017)

    Article  Google Scholar 

  13. A.D. Tran Le, J.S. Zhang, Z. Liu, Impact of humidity on formaldehyde and moisture buffering capacity of porous building material. J. Build. Eng. 36, 102114 (2021)

    Article  Google Scholar 

  14. M.P. Spilak, A.M. Madsen, S.M. Knudsen, B. Kolarik, E.W. Hansen, M. Frederiksen, et al., Impact of dwelling characteristics on concentrations of bacteria, fungi, endotoxin and total inflammatory potential in settled dust. Build. Environ. 93(Part 1), 64–71 (2015)

    Article  Google Scholar 

  15. K. Kallawicha, S. Boonvisut, H.J. Chao, T. Nitmetawong, Bedroom environment and sleep quality of apartment building residents in urban Bangkok. Build. Environ. 188, 107474 (2021)

    Article  Google Scholar 

  16. T. Nitmetawong, S. Boonvisut, K. Kallawicha, H.J. Chao, Effect of indoor environmental quality on building-related symptoms among the residents of apartment-type buildings in Bangkok area. Hum. Ecol. Risk Assess. Int. J. 26(10), 2663–2677 (2019)

    Article  Google Scholar 

  17. C. Sekhar, M. Akimoto, X. Fan, M. Bivolarova, C. Liao, L. Lan, et al., Bedroom ventilation: Review of existing evidence and current standards. Build. Environ. 184, 107229 (2020)

    Article  Google Scholar 

  18. C.G. Tischer, J. Heinrich, Exposure assessment of residential mould, fungi and microbial components in relation to children’s health: Achievements and challenges. Int. J. Hyg. Environ. Health 216(2), 109–114 (2013)

    Article  Google Scholar 

  19. S. Asrul, J. Juliana, Indoor air quality and its association with respiratory health among preschool children in urban and suburban area. Malays. J. Public Health Med. Special Volume 1, 78–88 (2015)

    Google Scholar 

  20. R. Pitarma, G. Marques, B.R. Ferreira, Monitoring indoor air quality for enhanced occupational health. J. Med. Syst. 41(2), 23 (2017)

    Article  Google Scholar 

  21. F.-L. Lim, Z. Hashim, S. Md Said, L.T.-L. Than, J.H. Hashim, D. Norbäck, Sick building syndrome (SBS) among office workers in a Malaysian university — Associations with atopy, fractional exhaled nitric oxide (FeNO) and the office environment. Sci. Total Environ. 536, 353–361 (2015)

    Article  Google Scholar 

  22. G. Smedje, J. Wang, D. Norbäck, H. Nilsson, K. Engvall, SBS symptoms in relation to dampness and ventilation in inspected single-family houses in Sweden. Int. Arch. Occup. Environ. Health 90(7), 703–711 (2017)

    Article  Google Scholar 

  23. P.F. Rosenbaum, J.A. Crawford, S.E. Anagnost, C.J.K. Wang, A. Hunt, R.D. Anbar, et al., Indoor airborne fungi and wheeze in the first year of life among a cohort of infants at risk for asthma. J. Expo. Sci. Environ. Epidemiol. 20, 503–515 (2010)

    Article  Google Scholar 

  24. N. Akar-Ghibril, W. Phipatanakul, The indoor environment and childhood asthma. Curr. Allergy Asthma Rep. 20(9), 43 (2020)

    Article  Google Scholar 

  25. Y. Hu, W. Liu, C. Huang, Z.J. Zou, Z.H. Zhao, L. Shen, et al., Home dampness, childhood asthma, hay fever, and airway symptoms in Shanghai, China: Associations, dose-response relationships, and lifestyle’s influences. Indoor Air 24(5), 450–463 (2014)

    Article  Google Scholar 

  26. W. Kanchongkittiphon, M.J. Mendell, J.M. Gaffin, G. Wang, W. Phipatanakul, Indoor environmental exposures and exacerbation of asthma: An update to the 2000 review by the Institute of Medicine. Environ. Health Perspect. 123(1), 6–20 (2015)

    Article  Google Scholar 

  27. B. Poirier, G. Guyot, H. Geoffroy, M. Woloszyn, M. Ondarts, E. Gonze, Pollutants emission scenarios for residential ventilation performance assessment. A review. J. Build. Eng. 42, 102488 (2021)

    Article  Google Scholar 

  28. A.-Y. Lim, M. Yoon, E.-H. Kim, H.-A. Kim, M.J. Lee, H.-K. Cheong, Effects of mechanical ventilation on indoor air quality and occupant health status in energy-efficient homes: A longitudinal field study. Sci. Total Environ. 785, 147324 (2021)

    Article  Google Scholar 

  29. P. Thateenaranon, M. Amornkitbamrung, J. Hirunlabh, J. Khedari, J. Waewsak, Full-scale field investigation of a bio-climatic house under Thailand tropical climate. Build. Environ. 126, 54–67 (2017)

    Article  Google Scholar 

  30. B. Hegarty, U. Haverinen-Shaughnessy, R.J. Shaughnessy, J. Peccia, Spatial gradients of fungal abundance and ecology throughout a damp building. Environ. Sci. Technol. Lett. 6(6), 329–333 (2019)

    Article  Google Scholar 

  31. K. Coombs, D. Taft, D.V. Ward, B.J. Green, G.L. Chew, B. Shamsaei, et al., Variability of indoor fungal microbiome of green and non-green low-income homes in Cincinnati, Ohio. Sci. Total Environ. 610(Supplement C), 212–218 (2018)

    Article  Google Scholar 

  32. E. Light, T. Nathanson, Chapter 49: Strategies and methodologies to investigate buildings, in Indoor Air Quality Handbook, ed. by J. D. Spengler, J. M. Samet, J. F. McCarthy, 1st edn., (McGraw-Hall, New York, 2000), pp. 1107–1123

    Google Scholar 

  33. S. Rogawansamy, S. Gaskin, M. Taylor, D. Pisaniello, An evaluation of antifungal agents for the treatment of fungal contamination in indoor air environments. Int. J. Environ. Res. Public Health 12(6), 6319–6332 (2015)

    Article  Google Scholar 

  34. A. Apisarnthanarak, D.K. Warren, C. Glen Mayhall, Healthcare-associated infections and their prevention after extensive flooding. Curr. Opin. Infect. Dis. Rev. 26(4), 359–365 (2013)

    Article  Google Scholar 

  35. M.G. Dhar, F. Pacheco, C. Barnes, Indoor airborne spore levels before and after healthy homes education and remediation. J. Allergy Clin. Immunol. 129(2), AB64 (2012)

    Article  Google Scholar 

  36. A. Adhikari, J. Jung, T. Reponen, J.S. Lewis, E.C. DeGrasse, L.F. Grimsley, et al., Aerosolization of fungi,(1-3)-b-D glucan, and endotoxin from flood-affected materials collected in New Orleans homes. Environ. Res. 109, 215–224 (2009)

    Article  Google Scholar 

  37. W.W. Nazaroff, Indoor bioaerosol dynamics. Indoor Air 26(1), 61–78 (2016)

    Article  Google Scholar 

  38. Z. Lei, C. Liu, L. Wang, N. Li, Effect of natural ventilation on indoor air quality and thermal comfort in dormitory during winter. Build. Environ. 125, 240–247 (2017)

    Article  Google Scholar 

  39. A. Datta, R. Suresh, A. Gupta, D. Singh, P. Kulshrestha, Indoor air quality of non-residential urban buildings in Delhi, India. Int. J. Sustain. Built Environ. 6, 412–420 (2017)

    Article  Google Scholar 

  40. N.B. Goodman, A.J. Wheeler, P.J. Paevere, G. Agosti, N. Nematollahi, A. Steinemann, Emissions from dryer vents during use of fragranced and fragrance-free laundry products. Air Qual. Atmos. Health 12(3), 289–295 (2019)

    Article  Google Scholar 

  41. M. Hadei, P.K. Hopke, A. Shahsavani, M. Moradi, M. Yarahmadi, B. Emam, et al., Indoor concentrations of VOCs in beauty salons; association with cosmetic practices and health risk assessment. J. Occup. Med. Toxicol. 13(1), 30 (2018)

    Article  Google Scholar 

  42. E. Cheek, V. Guercio, C. Shrubsole, S. Dimitroulopoulou, Portable air purification: Review of impacts on indoor air quality and health. Sci. Total Environ. 766, 142585 (2021)

    Article  Google Scholar 

  43. K. Pamonpol, T. Areerob, K. Prueksakorn, Indoor air quality improvement by simple ventilated practice and Sansevieria trifasciata. Atmosphere 11(3), 271 (2020)

    Article  Google Scholar 

  44. P.J. Irga, F.R. Torpy, Indoor air pollutants in occupational buildings in a sub-tropical climate: Comparison among ventilation types. Build. Environ. 98, 190–199 (2016)

    Article  Google Scholar 

  45. D. Rim, E.T. Gall, J.B. Kim, G.-N. Bae, Particulate matter in urban nursery schools: A case study of Seoul, Korea during winter months. Build. Environ. 119, 1–10 (2017)

    Article  Google Scholar 

  46. I. Suriaman, Mardiyati, J. Hendrarsakti, A.D. Pasek, The improvement of indoor air quality (IAQ) by using natural and mechanical method, in AIP Conference Proceedings, vol. 1984, (2018)

    Google Scholar 

  47. C.-H. Huang, J. Xiang, E. Austin, J. Shirai, Y. Liu, C. Simpson, et al., Impacts of using auto-mode portable air cleaner on indoor PM2.5 levels: An intervention study. Build. Environ. 188, 107444 (2021)

    Article  Google Scholar 

  48. USEPA, What is a HEPA Filter? (2021). Available: https://www.epa.gov/indoor-air-quality-iaq/what-hepa-filter-1. Accessed: 26 July 2021

  49. D.A. Christopherson, W.C. Yao, M. Lu, R. Vijayakumar, A.R. Sedaghat, High-efficiency particulate air filters in the era of COVID-19: Function and efficacy. Otolaryngol. Head Neck Surg. 163(6), 1153–1155 (2020)

    Article  Google Scholar 

  50. USEPA, Air Cleaners, HVAC Filters, and Coronavirus (COVID-19) (2021). Available: https://www.epa.gov/coronavirus/air-cleaners-hvac-filters-and-coronavirus-covid-19. Accessed: 15 July 2021

  51. J.S. Park, I. Han, E.H. Choi, Properties of plasma sterilizer using non-thermal atmospheric-pressure biocompatible plasma. AIP Adv. 9(7), 075125 (2019)

    Article  Google Scholar 

  52. USEPA, Guide to Air Cleaner in the Home; 2nd Edition Portable Air Cleaner, Furnace, and HVAC Filters (2018). Available: https://www.epa.gov/sites/production/files/2018-07/documents/guide_to_air_cleaners_in_the_home_2nd_edition.pdf. Accessed: 15 July 2021

  53. K. Kallawicha, H.J. Chao, N. Kotchasatan, Bioaerosol levels and the indoor air quality of laboratories in Bangkok metropolis. Aerobiologia 35(1), 1–14 (2019)

    Article  Google Scholar 

  54. S. Cabo Verde, S.M. Almeida, J. Matos, D. Guerreiro, M. Meneses, T. Faria, et al., Microbiological assessment of indoor air quality at different hospital sites. Res. Microbiol. 166(7), 557–563 (2015)

    Article  Google Scholar 

  55. M.-H. Liu, T.-H. Tung, F.-F. Chung, L.-C. Chuang, G.-H. Wan, High total volatile organic compounds pollution in a hospital dental department. Environ. Monit. Assess. 189(11), 571 (2017)

    Article  Google Scholar 

  56. A.G. Sanchez, W.D. Smart, Towards Verifiable COVID-19 Aerosol Disinfection Using Ultraviolet Light with a Mobile Robot, presented at the 14th Pervasive Technologies Related to Assistive Environments Conference, Corfu, Greece, 2021. Available: https://doi.org/10.1145/3453892.3461335

  57. H.K. Choi, C. Cui, H. Seok, J.-Y. Bae, J.H. Jeon, G.E. Lee, et al., Feasibility of ultraviolet light-emitting diode irradiation robot for terminal decontamination of coronavirus disease 2019 (COVID-19) patient rooms. Infect. Control Hosp. Epidemiol., 1–6 (2021). https://doi.org/10.1017/ice.2021.95

  58. D. Gordon, J. Ward, C.J. Yao, J. Lee, Built environment airborne infection control strategies in pandemic alternative care sites. Health Environ. Res. Des. J. 14(2), 38–48 (2021)

    Google Scholar 

  59. H. Luo, L. Zhong, Ultraviolet germicidal irradiation (UVGI) for in-duct airborne bioaerosol disinfection: Review and analysis of design factors. Build. Environ. 197, 107852 (2021)

    Article  Google Scholar 

  60. S.S. Nunayon, H.H. Zhang, A.C.K. Lai, A novel upper-room UVC-LED irradiation system for disinfection of indoor bioaerosols under different operating and airflow conditions. J. Hazard. Mater. 396, 122715 (2020)

    Article  Google Scholar 

  61. Y. Yang, H. Zhang, S.S. Nunayon, V. Chan, A.C. Lai, Disinfection efficacy of ultraviolet germicidal irradiation on airborne bacteria in ventilation ducts. Indoor Air 28(6), 806–817 (2018)

    Article  Google Scholar 

  62. D. Kumar, U. Sonawane, M.K. Gohil, R. Pol, A.S. Patil, R. Mittal, et al., Design and development of a portable disinfectant device. Trans. Indian Natl Acad. Eng. 5(2), 299–303 (2020)

    Article  Google Scholar 

  63. L.E. Murdoch, K. Mckenzie, M. Maclean, S.J. Macgregor, J.G. Anderson, Lethal effects of high-intensity violet 405-nm light on Saccharomyces cerevisiae, Candida albicans, and on dormant and germinating spores of Aspergillus Niger. Fungal Biol. 117, 519–527 (2013)

    Article  Google Scholar 

  64. V. Pérez, M. Hengst, L. Kurte, C. Dorador, W.H. Jeffrey, R. Wattiez, et al., Bacterial survival under extreme UV radiation: A comparative proteomics study of Rrhodobacter sp., isolated from high altitude wetlands in Chile. Front. Microbiol. 8, 1173 (2017)

    Article  Google Scholar 

  65. Health and Safety Executive. Disinfecting Using Fog, Mist and Other Systems During the Coronavirus (COVID-19) Pandemic (2021). Available: https://www.hse.gov.uk/coronavirus/disinfecting-premises-during-coronavirus-outbreak.htm. Accessed: 17 July 2021

  66. Y. Fan, Y. Hu, L. Jiang, Q. Liu, L. Xiong, J. Pan, et al., Intelligent disinfection robots assist medical institutions in controlling environmental surface disinfection. Intell. Med. 1(1), 19–23 (2021)

    Article  Google Scholar 

  67. M. Kchaou, K. Abuhasel, M. Khadr, F. Hosni, M. Alquraish, Surface disinfection to protect against microorganisms: Overview of traditional methods and issues of emergent nanotechnologies. Appl. Sci. 10(17), 6040 (2020)

    Article  Google Scholar 

  68. L.M.C.D. Santos, E.S.D. Silva, F.O. Oliveira, L.D.A.P. Rodrigues, P.R.F. Neves, C.S. Meira, et al., Ozonized water in microbial control: analysis of the stability, in vitro biocidal potential, and cytotoxicity. Biology 10(6), 525 (2021)

    Article  Google Scholar 

  69. M.S. Block, B.G. Rowan, Hypochlorous acid: A review. J. Oral Maxillofac. Surg. 78(9), 1461–1466 (2020)

    Article  Google Scholar 

  70. J.L. Cadnum, A.L. Jencson, S.H. Livingston, D.F. Li, S.N. Redmond, B. Pearlmutter, et al., Evaluation of an electrostatic spray disinfectant technology for rapid decontamination of portable equipment and large open areas in the era of SARS-CoV-2. Am. J. Infect. Control 48(8), 951–954 (2020)

    Article  Google Scholar 

  71. S.C. Kim, D.-B. Kwak, T. Kuehn, D.Y.H. Pui, Characterization of handheld disinfectant sprayers for effective surface decontamination to mitigate severe acute respiratory coronavirus virus 2 (SARS-CoV-2) transmission. Infect. Control Hosp. Epidemiol. 42(7), 901–903 (2021)

    Article  Google Scholar 

  72. J. Sowa, J. Hendiger, M. Maziejuk, T. Sikora, L. Osuchowski, H. Kamińska, Potted plants as active and passive biofilters improving indoor air quality. IOP Conf. Ser. Earth Environ. Sci. 290, 012150 (2019)

    Article  Google Scholar 

  73. A.D. Susanto, W. Winardi, M. Hidayat, A. Wirawan, The use of indoor plant as an alternative strategy to improve indoor air quality in Indonesia. Rev. Environ. Health 36(1), 95–99 (2021)

    Article  Google Scholar 

  74. T.A. Moya, A. van den Dobbelsteen, M. Ottelé, P.M. Bluyssen, A review of green systems within the indoor environment. Indoor Built Environ. 28(3), 298–309 (2019)

    Article  Google Scholar 

  75. C. Gubb, T. Blanusa, A. Griffiths, C. Pfrang, Can houseplants improve indoor air quality by removing CO2 and increasing relative humidity? Air Qual. Atmos. Health 11(10), 1191–1201 (2018)

    Article  Google Scholar 

  76. B. Bhargava, S. Malhotra, A. Chandel, A. Rakwal, R.R. Kashwap, S. Kumar, Mitigation of indoor air pollutants using areca palm potted plants in real-life settings. Environ. Sci. Pollut. Res. 28(7), 8898–8906 (2021)

    Article  Google Scholar 

  77. Y.-M. Su, C.-H. Lin, Removal of indoor carbon dioxide and formaldehyde using green walls by bird nest fern. Hortic. J. 84(1), 69–76 (2015)

    Article  Google Scholar 

  78. H.-H. Kim, J.-W. Park, J.-Y. Yang, K.-J. Kim, J.-Y. Lee, D.-C. Shin, et al., Evaluating the relative health of residents in newly built apartment houses according to the presence of indoor plants. J. Jpn. Soc. Hortic. Sci. 79(2), 200–206 (2010)

    Article  Google Scholar 

  79. H.-H. Kim, J.-Y. Yang, J.-Y. Lee, J.-W. Park, K.-J. Kim, B.-S. Lim, et al., House-plant placement for indoor air purification and health benefits on asthmatics. Environ. Health Toxicol. 29, e2014014 (2014)

    Article  Google Scholar 

  80. R.-Y. Chen, K.-F. Ho, G.-B. Hong, K.-J. Chuang, Houseplant, indoor air pollution, and cardiovascular effects among elderly subjects in Taipei, Taiwan. Sci. Total Environ. 705, 135770 (2020)

    Article  Google Scholar 

  81. B.E. Cummings, M.S. Waring, Potted plants do not improve indoor air quality: A review and analysis of reported VOC removal efficiencies. J. Expo. Sci. Environ. Epidemiol. 30(2), 253–261 (2020)

    Article  Google Scholar 

  82. H. Priyamvada, C. Priyanka, R.K. Singh, M. Akila, R. Ravikrishna, S.S. Gunthe, Assessment of PM and bioaerosols at diverse indoor environments in a southern tropical Indian region. Build. Environ. 137, 215–225 (2018)

    Article  Google Scholar 

  83. P.J. Irga, P. Abdo, M. Zavattaro, F.R. Torpy, An assessment of the potential fungal bioaerosol production from an active living wall. Build. Environ. 111, 140–146 (2017)

    Article  Google Scholar 

  84. S. Panyametheekul, T. Rattanapun, J. Morris, M. Ongwandee, Foliage houseplant responses to low formaldehyde levels. Build. Environ. 147, 67–76 (2019)

    Article  Google Scholar 

  85. B.-K. Jang, K. Park, S.Y. Lee, H. Lee, S.H. Yeon, B. Ji, et al., Screening of particulate matter reduction ability of 21 indigenous Korean evergreen species for indoor use. Int. J. Environ. Res. Public Health 18(18), 9803 (2021)

    Article  Google Scholar 

  86. J. Saini, M. Dutta, G. Marques, Indoor air quality monitoring systems based on internet of things: A systematic review. Int. J. Environ. Res. Public Health 17(14), 4942 (2020)

    Article  Google Scholar 

  87. C. Stolojescu-Crisan, C. Crisan, B.-P. Butunoi, An IoT-based smart home automation system. Sensors 21(11), 3784 (2021)

    Article  Google Scholar 

  88. H. Yang, W. Lee, H. Lee, IoT smart home adoption: The importance of proper level automation. J. Sensors 2018, 6464036 (2018)

    Google Scholar 

  89. M.B. Yassein, I. Hmeidi, F. Shatnawi, W. Mardini, Y. Khamayseh, Smart home is not smart enough to protect you - protocols, challenges and open issues. Procedia Comput. Sci. 160, 134–141 (2019)

    Article  Google Scholar 

  90. S. Pira, The social issues of smart home: A review of four European cities’ experiences. Eur. J. Futures Res. 9(1), 3 (2021)

    Article  Google Scholar 

  91. A. Schieweck, E. Uhde, T. Salthammer, L.C. Salthammer, L. Morawska, M. Mazaheri, et al., Smart homes and the control of indoor air quality. Renew. Sust. Energ. Rev. 94, 705–718 (2018)

    Article  Google Scholar 

  92. B. Spencer, F. Al-Obeidat, O. Alfandi, Selecting sensors when forecasting temperature in smart buildings. Procedia Comput. Sci. 109, 777–784 (2017)

    Article  Google Scholar 

  93. J. Saini, M. Dutta, G. Marques, Sensors for indoor air quality monitoring and assessment through internet of things: A systematic review. Environ. Monit. Assess. 193(2), 66 (2021)

    Article  Google Scholar 

  94. Q.P. Ha, S. Metia, M.D. Phung, Sensing data fusion for enhanced indoor air quality monitoring. IEEE Sensors J. 20(8), 4430–4441 (2020)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kraiwuth Kallawicha .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kallawicha, K., Wongsasuluk, P., Chao, H.J. (2022). Modern Solutions for Indoor Air Quality Management in Commercial and Residential Spaces. In: Saini, J., Dutta, M., Marques, G., Halgamuge, M.N. (eds) Integrating IoT and AI for Indoor Air Quality Assessment. Internet of Things. Springer, Cham. https://doi.org/10.1007/978-3-030-96486-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-96486-3_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-96485-6

  • Online ISBN: 978-3-030-96486-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics