Skip to main content

Bioaerosols: An Unavoidable Indoor Air Pollutant That Deteriorates Indoor Air Quality

  • Chapter
  • First Online:
Integrating IoT and AI for Indoor Air Quality Assessment

Part of the book series: Internet of Things ((ITTCC))

Abstract

Bioaerosols, in addition to common gaseous or particulate pollutants, are also important air pollutants that deteriorate indoor air quality. Bioaerosols are the airborne particles present as or originating from living organisms such as fungi, bacteria, and viruses and include toxins, fragments, or waste product from various organisms. In this chapter, the characteristics of indoor bioaerosols are provided. The common type and sources of bioaerosols are summarized. These biological pollutants are commonly generated both by the activities and behaviors of the occupants, and by housing materials and substances that penetrate from the outdoor environment. Fungi and bacteria are the most common bioaerosols present in the indoor environment. After exposure, occupants may experience adverse health outcomes such as infection or allergy. If the indoor environment is severely contaminated, as observed in many places during the COVID-19 pandemic, especially in public areas, a large number of people may be affected by contamination. This chapter also summarizes monitoring and assessment technologies. The monitoring procedure can be chosen and performed according to the objective of the assessment. Advance technologies such as real-time sensor monitoring, Internet of Things, and artificial intelligence have been integrated, but their use for bioaerosols monitoring is still limited as compared to their use for other types of indoor air pollutants. Effective control strategies to reduce the contamination of indoor bioaerosols are also provided in this chapter that could benefit occupants to reduce the contamination and minimize exposure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. J. Macher, Bioaerosols: Assessment and Control (ACGIH, Cincinnati, 1999)

    Google Scholar 

  2. J.M. Macher, J. Douwes, B. Prezant, T. Reponen, Bioaerosols, in Aerosols Handbook, ed. by L. S. Ruzer, N. H. Harley, 2nd edn., (CRC Press, Boca Raton, 2012), pp. 286–343

    Google Scholar 

  3. J. Douwes, P. Thorne, N. Pearce, D. Heederik, Bioaerosol health effects and exposure assessment: Progress and prospects. Ann. Occup. Hyg. 47(3), 187–200 (2003)

    Google Scholar 

  4. W. Eduard, J. Douwes, R. Mehl, D. Heederik, E. Melbostad, Short term exposure to airborne microbial agents during farm work: Exposure-response relations with eye and respiratory symptoms. Occup. Environ. Med. 58(2), 113–118 (2001)

    Article  Google Scholar 

  5. K. Kallawicha, Y.-J. Tsai, Y.-C. Chuang, S.-C.C. Lung, C.-D. Wu, T.-H. Chen, et al., The spatiotemporal distributions and determinants of ambient fungal spores in the Greater Taipei area. Environ. Pollut. 204, 173–180 (2015)

    Article  Google Scholar 

  6. K. Kallawicha, H.J. Chao, N. Kotchasatan, Bioaerosol levels and the indoor air quality of laboratories in Bangkok metropolis. Aerobiologia 35(1), 1–14 (2019)

    Article  Google Scholar 

  7. H.-L. Huang, M.-K. Lee, H.-W. Shih, Assessment of indoor bioaerosols in public spaces by real-time measured airborne particles. Aerosol Air Qual. Res. 17(9), 2276–2288 (2017)

    Article  Google Scholar 

  8. X. Wang, W. Liu, C. Huang, J. Cai, L. Shen, Z. Zou, et al., Associations of dwelling characteristics, home dampness, and lifestyle behaviors with indoor airborne culturable fungi: On-site inspection in 454 Shanghai residences. Build. Environ. 102, 159–166 (2016)

    Article  Google Scholar 

  9. Y. Yoda, K. Tamura, M. Shima, Airborne endotoxin concentrations in indoor and outdoor particulate matter and their predictors in an urban city. Indoor Air 27(5), 955–964 (2017)

    Article  Google Scholar 

  10. J. Wu, W. Weng, COVID-19 virus released from larynx might cause a higher exposure dose in indoor environment. Environ. Res. 199, 111361 (2021)

    Article  Google Scholar 

  11. T. Akaishi, S. Kushimoto, Y. Katori, S. Kure, K. Igarashi, S. Takayama, et al., COVID-19 transmission in group living environments and households. Sci. Rep. 11(1), 11616 (2021)

    Article  Google Scholar 

  12. B. Hegarty, U. Haverinen-Shaughnessy, R.J. Shaughnessy, J. Peccia, Spatial gradients of fungal abundance and ecology throughout a damp building. Environ. Sci. Technol. Lett. 6(6), 329–333 (2019)

    Article  Google Scholar 

  13. C.M.T. Tiesler, E. Thiering, C. Tischer, I. Lehmann, B. Schaaf, A. von Berg, et al., Exposure to visible mould or dampness at home and sleep problems in children: Results from the LISAplus study. Environ. Res. 137, 357–363 (2015)

    Article  Google Scholar 

  14. M. Sandel, J.S. Murphy, S.L. Dixon, J.L. Adgate, G.L. Chew, S. Dorevitch, et al., A side-by-side comparison of three allergen sampling methods in settled house dust. J Expos. Sci. Environ. Epidemiol. 24(6), 650–656 (2014)

    Article  Google Scholar 

  15. S.D. Knowlton, C.L. Boles, E.N. Perencevich, D.J. Diekema, M.W. Nonnenmann, Bioaerosol concentrations generated from toilet flushing in a hospital-based patient care setting. Antimicrob. Resist. Infect. Control 7(1), 16 (2018)

    Article  Google Scholar 

  16. M. Lou, S. Liu, C. Gu, H. Hu, Z. Tang, Y. Zhang, et al., The bioaerosols emitted from toilet and wastewater treatment plant: A literature review. Environ. Sci. Pollut. Res. 28(3), 2509–2521 (2021)

    Article  Google Scholar 

  17. WHO and UNICEF, Water, sanitation, hygiene, and waste management for the COVID-19 virus: Interim guidance (2020). Available at: https://apps.who.int/iris/bitstream/handle/10665/331846/WHO-2019-nCoV-IPC_WASH-2020.3-eng.pdf?sequence=1&isAllowed=y

  18. R. Balasubramanian, P. Nainar, A. Rajasekar, Airborne bacteria, fungi, and endotoxin levels in residential microenvironments: A case study. Aerobiologia 28(3), 375–390 (2012)

    Article  Google Scholar 

  19. A. Stamatelopoulou, I. Pyrri, D.N. Asimakopoulos, T. Maggos, Indoor air quality and dustborne biocontaminants in bedrooms of toddlers in Athens, Greece. Build. Environ. 173, 106756 (2020)

    Article  Google Scholar 

  20. Y.-C. Yen, C.-Y. Yang, K.D. Mena, Y.-T. Cheng, C.-S. Yuan, P.-S. Chen, Jumping on the bed and associated increases of PM10, PM2.5, PM1, airborne endotoxin, bacteria, and fungi concentrations. Environ. Pollut. 245, 799–809 (2019)

    Article  Google Scholar 

  21. K. Bastl, M. Kmenta, C. Geller-Bernstein, U. Berger, S. Jäger, Can we improve pollen season definitions by using the symptom load index in addition to pollen counts? Environ. Pollut. 204, 109–116 (2015)

    Article  Google Scholar 

  22. R. Tormo-Molina, Á. Gonzalo-Garijo, I. Silva-Palacios, S. Fernández-Rodríguez, Seasonal and spatial variations of indoor pollen in a hospital. Int. J. Environ. Res. Public Health 6(12), 3169 (2009)

    Article  Google Scholar 

  23. E.V. Bräuner, M. Frederiksen, B. Kolarik, L. Gunnarsen, Typical benign indoor aerosol concentrations in public spaces and designing biosensors for pathogen detection: A review. Build. Environ. 82, 190–202 (2014)

    Article  Google Scholar 

  24. K.J. Heo, C.E. Lim, H.B. Kim, B.U. Lee, Effects of human activities on concentrations of culturable bioaerosols in indoor air environments. J. Aerosol Sci. 104, 58–65 (2017)

    Article  Google Scholar 

  25. A.J. Prussin, L.C. Marr, Sources of airborne microorganisms in the built environment. Microbiome 3(1), 78 (2015)

    Article  Google Scholar 

  26. S. Rocchi, G. Reboux, V. Frossard, E. Scherer, B. Valot, A. Laboissière, et al., Microbiological characterization of 3193 French dwellings of Elfe cohort children. Sci. Total Environ. 505, 1026–1035 (2015)

    Article  Google Scholar 

  27. P.M. Salo, J. Wilkerson, K.M. Rose, R.D. Cohn, A. Calatroni, H.E. Mitchell, et al., Bedroom allergen exposures in US households. J. Allergy Clin. Immunol. 141(5), 1870–1879.e14 (2018)

    Article  Google Scholar 

  28. R.K. Bush, J.M. Portnoy, The role and abatement of fungal allergens in allergic diseases. J. Allergy Clin. Immunol. 107(3, Supplement), S430–S440 (2001)

    Article  Google Scholar 

  29. S.N. Baxi, J.M. Portnoy, D. Larenas-Linnemann, W. Phipatanakul, C. Barnes, S. Baxi, et al., Exposure and health effects of fungi on humans. J Allergy Clin Immunol Pract 4(3), 396–404 (2016)

    Article  Google Scholar 

  30. P.F. Rosenbaum, J.A. Crawford, S.E. Anagnost, C.J.K. Wang, A. Hunt, R.D. Anbar, et al., Indoor airborne fungi and wheeze in the first year of life among a cohort of infants at risk for asthma. J. Expo. Sci. Environ. Epidemiol. 20, 503–515 (2010)

    Article  Google Scholar 

  31. J.F. Gent, P. Ren, K. Belanger, E. Triche, M.B. Bracken, T.R. Holford, et al., Levels of household mold associated with respiratory symptoms in the first year of life in a cohort at risk for asthma. Environ. Health Perspect. 110(12), A781–A786 (2002)

    Article  Google Scholar 

  32. J.F. Gent, J.M. Kezik, M.E. Hill, E. Tsai, D.-W. Li, B.P. Leaderer, Household mold and dust allergens: Exposure, sensitization and childhood asthma morbidity. Environ. Res. 118, 86–93 (2012)

    Article  Google Scholar 

  33. C. Tischer, F. Weikl, A.J. Probst, M. Standl, J. Heinrich, K. Pritsch, Urban dust microbiome: Impact on later Atopy and wheezing. Environ. Health Perspect. 124, 1919–1923 (2016)

    Article  Google Scholar 

  34. M.J. Ege, M. Mayer, A.-C. Normand, J. Genuneit, W.O.C.M. Cookson, C. Braun-Fahrländer, et al., Exposure to environmental microorganisms and childhood asthma. N. Engl. J. Med. 364(8), 701–709 (2011)

    Article  Google Scholar 

  35. W. Kanchongkittiphon, M.J. Mendell, J.M. Gaffin, G. Wang, W. Phipatanakul, Indoor environmental exposures and exacerbation of asthma: An update to the 2000 review by the Institute of Medicine. Environ. Health Perspect. 123(1), 6–20 (2015)

    Article  Google Scholar 

  36. P.D. Blanc, P.J. Quinlan, P.P. Katz, J.R. Balmes, L. Trupin, M.G. Cisternas, et al., Higher environmental relative moldiness index values measured in homes of adults with asthma, rhinitis, or both conditions. Environ. Res. 122, 98–101 (2013)

    Article  Google Scholar 

  37. S. Vesper, L. Wymer, The relationship between environmental relative moldiness index values and asthma. Int. J. Hyg. Environ. Health 219(3), 233–238 (2016)

    Article  Google Scholar 

  38. T. Nitmetawong, S. Boonvisut, K. Kallawicha, H.J. Chao, Effect of indoor environmental quality on building-related symptoms among the residents of apartment-type buildings in Bangkok area. Hum. Ecol. Risk Assess. Int. J. 26(10), 2663–2677 (2019)

    Article  Google Scholar 

  39. B. Crook, N.C. Burton, Indoor moulds, sick building syndrome and building related illness. Fungal Biol. Rev. 24(3–4), 106–113 (2010)

    Article  Google Scholar 

  40. X. Zhang, Z. Zhao, T. Nordquist, L. Larsson, A. Sebastian, D. Norback, A longitudinal study of sick building syndrome among pupils in relation to microbial components in dust in schools in China. Sci. Total Environ. 409(24), 5253–5259 (2011)

    Article  Google Scholar 

  41. H.J. Chao, J. Schwartz, D.K. Milton, H.A. Burge, The work environment and workers’ health in four large office buildings. Environ. Health Perspect. 111(9), 1242–1248 (2003)

    Article  Google Scholar 

  42. D. Leger, B. Bonnefoy, B. Pigearias, B. de La Giclais, A. Chartier, Poor sleep is highly associated with house dust mite allergic rhinitis in adults and children. Allergy Asthma Clin Immunol 13(1), 36 (2017)

    Article  Google Scholar 

  43. K. Kallawicha, S. Boonvisut, H.J. Chao, T. Nitmetawong, Bedroom environment and sleep quality of apartment building residents in urban Bangkok. Build. Environ. 188, 107474 (2021)

    Article  Google Scholar 

  44. T.F. Booth, B. Kournikakis, N. Bastien, J. Ho, D. Kobasa, L. Stadnyk, et al., Detection of airborne severe acute respiratory syndrome (SARS) coronavirus and environmental contamination in SARS outbreak units. J. Infect. Dis. 191(9), 1472–1477 (2005)

    Article  Google Scholar 

  45. L.D. Stetzenbach, Airborne infectious microorganisms, in Encyclopedia of Microbiology (Third Edition), ed. by M. Schaechter, (Academic Press, Oxford, 2009), pp. 175–182

    Chapter  Google Scholar 

  46. J. Yan, M. Grantham, J. Pantelic, P.J. Bueno de Mesquita, B. Albert, F. Liu, et al., Infectious virus in exhaled breath of symptomatic seasonal influenza cases from a college community. Proc. Natl. Acad. Sci. 115(5), 1081–1086 (2018)

    Article  Google Scholar 

  47. K. Al Huraimel, M. Alhosani, S. Kunhabdulla, M.H. Stietiya, SARS-CoV-2 in the environment: Modes of transmission, early detection and potential role of pollutions. Sci. Total Environ. 744, 140946 (2020)

    Article  Google Scholar 

  48. International Organization for Standardization (ISO), ISO 16000-19:2012 Indoor air – Part 19: Sampling strategy for moulds (2014). Available at: https://www.iso.org/standard/44326.html

  49. R. Roy, R. Jan, U. Joshi, R. Bhor, K. Pai, P.G. Satsangi, Characterization, pro-inflammatory response and cytotoxic profile of bioaerosols from urban and rural residential settings in Pune, India. Environ. Pollut. 264, 114698 (2020)

    Article  Google Scholar 

  50. European Committee for Standardization, EN 13098:2019 (E) Workplace exposure – Measurement of airborne microorganisms and microbial compounds – General requirements (2019). Available at: https://standards.iteh.ai/catalog/standards/cen/1458b367-24ce-4ffa-ad45-0e09ab43af8f/en-13098-2019

  51. European Committee for Standardization, CEN/TS 16115-1:2011: Ambient air quality – Measurement of bioaerosols – Part 1: Determination of moulds using filter samplingsystems and culture-based analyses (2011). Available at: https://standards.iteh.ai/catalog/standards/cen/13254b49-6d3b-4c52-b21d-52e84b627511/cen-ts-16115-1-2011

  52. Y.-C. Hsu, P.-Y. Kung, T.-N. Wu, Y.-H. Shen, Characterization of indoor-air bioaerosols in Southern Taiwan. Aerosol Air Qual. Res. 12, 651–661 (2012)

    Article  Google Scholar 

  53. E. Brągoszewska, A. Mainka, J.S. Pastuszka, Bacterial aerosols in an urban nursery school in Gliwice, Poland: A case study. Aerobiologia 32(3), 469–480 (2016)

    Article  Google Scholar 

  54. A.M. Nasrabadi, J.-W. Park, H.S. Kim, J.S. Han, J. Hyun, D. Yong, et al., Assessment of indoor bioaerosols using a lab-made virtual impactor. Aerosol Sci. Technol. 51(2), 159–167 (2017)

    Article  Google Scholar 

  55. J.A. Huffman, A.E. Perring, N.J. Savage, B. Clot, B. Crouzy, F. Tummon, et al., Real-time sensing of bioaerosols: Review and current perspectives. Aerosol Sci. Technol. 54(5), 465–495 (2020)

    Article  Google Scholar 

  56. National Allergy Bureau, NAB Pollen and Mold count (2015). Available at: http://www.aaaai.org/global/nab-pollen-counts.aspx

  57. J. Saini, M. Dutta, G. Marques, Sensors for indoor air quality monitoring and assessment through internet of things: A systematic review. Environ. Monit. Assess. 193(2), 66 (2021)

    Article  Google Scholar 

  58. J. Saini, M. Dutta, G. Marques, Indoor air quality monitoring systems based on internet of things: A systematic review. Int. J. Environ. Res. Public Health 17(14), 4942 (2020)

    Article  Google Scholar 

  59. D. Liu, Q. Zhang, J. Jiang, D.-R. Chen, Performance calibration of low-cost and portable particular matter (PM) sensors. J. Aerosol Sci. 112, 1–10 (2017)

    Article  Google Scholar 

  60. C.-H. Tseng, H.-C. Wang, N.-Y. Xiao, Y.-M. Chang, Examining the feasibility of prediction models by monitoring data and management data for bioaerosols inside office buildings. Build. Environ. 46(12), 2578–2589 (2011)

    Article  Google Scholar 

  61. Z. Liu, K. Cheng, H. Li, G. Cao, D. Wu, Y. Shi, Exploring the potential relationship between indoor air quality and the concentration of airborne culturable fungi: A combined experimental and neural network modeling study. Environ. Sci. Pollut. Res. 25(4), 3510–3517 (2018)

    Article  Google Scholar 

  62. C. Su, J. Lau, F. Yu, A case study of upper-room UVGI in densely-occupied elementary classrooms by real-time fluorescent bioaerosol measurements. Int. J. Environ. Res. Public Health 14(1), 51 (2017)

    Article  Google Scholar 

  63. R.J. Shaughnessy, P.R. Morey, Remediation of microbial contamination, in Bioaerosols: Assessment and Control, ed. by J. Macher, (ACGIH, Cincinnati, 1998)

    Google Scholar 

  64. J. Mensah-Attipoe, S. Saari, A.-M. Veijalainen, P. Pasanen, J. Keskinen, J.T.T. Leskinen, et al., Release and characteristics of fungal fragments in various conditions. Sci. Total Environ. 547, 234–243 (2016)

    Article  Google Scholar 

  65. S. Gopalakrishnan, A.K. Devassikutty, M. Mathew, D. Ayyappan, S. Thiagarajan, R. Raghunathan, Passive release of fungal spores from synthetic solid waste surfaces. Aerosol Air Qual. Res. 16(6), 1441–1451 (2016)

    Article  Google Scholar 

  66. S. Gopalakrishnan, R. Arigela, S.K. Gupta, R. Raghunathan, Dynamic response of passive release of fungal spores from exposure to air. J. Aerosol Sci. 133, 37–48 (2019)

    Article  Google Scholar 

  67. S. Saari, J. Mensah-Attipoe, T. Reponen, A.M. Veijalainen, A. Salmela, P. Pasanen, et al., Effects of fungal species, cultivation time, growth substrate, and air exposure velocity on the fluorescence properties of airborne fungal spores. Indoor Air 25(6), 653–661 (2015)

    Article  Google Scholar 

  68. A.L. Pasanen, P. Pasanen, M.J. Jantunen, P. Kalliokoski, Significance of air humidity and air velocity for fungal spore release into the air. Atmos. Environ. Part A 25(2), 459–462 (1991)

    Article  Google Scholar 

  69. J.P.S. Cabral, Can we use indoor fungi as bioindicators of indoor air quality? Historical perspectives and open questions. Sci. Total Environ. 408, 4285–4295 (2010)

    Article  Google Scholar 

  70. A. Forthomme, A. Joubert, Y. Andrès, X. Simon, P. Duquenne, D. Bemer, et al., Microbial aerosol filtration: Growth and release of a bacteria–fungi consortium collected by fibrous filters in different operating conditions. J. Aerosol Sci. 72, 32–46 (2014)

    Article  Google Scholar 

  71. D. Norbäck, C. Lu, Y. Zhang, B. Li, Z. Zhao, C. Huang, et al., Common cold among pre-school children in China - associations with ambient PM10 and dampness, mould, cats, dogs, rats and cockroaches in the home environment. Environ. Int. 103, 13–22 (2017)

    Article  Google Scholar 

  72. C. He, H. Salonen, X. Ling, L. Crilley, N. Jayasundara, H.C. Cheung, et al., The impact of flood and post-flood cleaning on airborne microbiological and particle contamination in residential houses. Environ. Int. 69, 9–17 (2014)

    Article  Google Scholar 

  73. F.F.-S. Wu, M.-W. Wu, N. Pierse, J. Crane, R. Siebers, Daily vacuuming of mattresses significantly reduces house dust mite allergens, bacterial endotoxin, and fungal β-glucan. J. Asthma 49(2), 139–143 (2012)

    Article  Google Scholar 

  74. D.-J. Wei, W.-T. Liu, H.-T. Chin, C.-H. Lin, I.-C. Chen, Y.-T. Chang, An investigation of airborne bioaerosols and endotoxins present in indoor traditional wet markets before and after operation in Taiwan: A case study. Int. J. Environ. Res. Public Health 18(6), 2945 (2021)

    Article  Google Scholar 

  75. M.G. Schmidt, H.H. Attaway, S. Terzieva, A. Marshall, L.L. Steed, D. Salzberg, et al., Characterization and control of the microbial community affiliated with copper or aluminum heat exchangers of HVAC systems. Curr. Microbiol. 65(2), 141–149 (2012)

    Article  Google Scholar 

  76. A. Li, Z. Liu, X. Zhu, Y. Liu, Q. Wang, The effect of air-conditioning parameters and deposition dust on microbial growth in supply air ducts. Energy Build. 42, 449–454 (2010)

    Article  Google Scholar 

  77. Y. Wu, A. Chen, I. Luhung, E.T. Gall, Q. Cao, V.W.-C. Chang, et al., Bioaerosol deposition on an air-conditioning cooling coil. Atmos. Environ. 144, 257–265 (2016)

    Article  Google Scholar 

  78. M. Telejko, Attempt to improve indoor air quality in computer laboratories. Procedia Eng. 172, 1154–1160 (2017)

    Article  Google Scholar 

  79. E. Cheek, V. Guercio, C. Shrubsole, S. Dimitroulopoulou, Portable air purification: Review of impacts on indoor air quality and health. Sci. Total Environ. 766, 142585 (2021)

    Article  Google Scholar 

  80. M. Dehghani, A. Sorooshian, S. Nazmara, A.N. Baghani, M. Delikhoon, Concentration and type of bioaerosols before and after conventional disinfection and sterilization procedures inside hospital operating rooms. Ecotoxicol. Environ. Saf. 164, 277–282 (2018)

    Article  Google Scholar 

  81. S. Pigeot-Remy, J.C. Lazzaroni, F. Simonet, P. Petinga, C. Vallet, P. Petit, et al., Survival of bioaerosols in HVAC system photocatalytic filters. Appl. Catal. B Environ. 144, 654–664 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kraiwuth Kallawicha .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kallawicha, K., Chao, H.J. (2022). Bioaerosols: An Unavoidable Indoor Air Pollutant That Deteriorates Indoor Air Quality. In: Saini, J., Dutta, M., Marques, G., Halgamuge, M.N. (eds) Integrating IoT and AI for Indoor Air Quality Assessment. Internet of Things. Springer, Cham. https://doi.org/10.1007/978-3-030-96486-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-96486-3_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-96485-6

  • Online ISBN: 978-3-030-96486-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics