Skip to main content

A Comprehensive Review on the Indoor Air Pollution Problem, Challenges, and Critical Viewpoints

  • Chapter
  • First Online:
Integrating IoT and AI for Indoor Air Quality Assessment

Part of the book series: Internet of Things ((ITTCC))

Abstract

Over the last decades, environmental pollution has become the main environmental risk to human being health due to the rise regarding waste production, in particular toward the air matrix. At the legislative level, European Directives set air quality objectives to prevent and protect human being health. Nevertheless, the European legislation only applies to outdoor environments, despite people pass ~90% of their time in inside spaces. It exists scientific studies sustain the presence of higher air pollutant levels in indoor than outdoor locations. For this reason, research studies for enlarging knowledge on indoor air quality result priority. Within the previous frame, this chapter aims to provide an indoor air quality benchmark, in terms of potential emission focuses, concentrations, impact on health, and methodologies for measuring air pollutants, focused on indoor air quality managers, control technicians, and potential students. The impact of indoor air quality should be considered at the global level due to several factors, such as indoor pollution is particular for each location, indoor-outdoor air inter-change, and atmospheric pollution is cross-border. The application of new computer tools (IoT and AI) on current and novel measuring air pollution technologies offers a unique chance for inside air quality management.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. M.D. Galán, Importance of air quality networks in controlling exposure to air pollution, in Environmental Emissions, (IntechOpen, 2021)

    Google Scholar 

  2. C. Zhu, K. Maharajan, K. Liu, Y. Zhang, Role of atmospheric particulate matter exposure in COVID-19 and other health risks in human: A review. Environ. Res. 198, 111281 (2021)

    Article  Google Scholar 

  3. M. Oliveira, K. Slezakova, C. Delerue-Matos, M.C. Pereira, S. Morais, Children environmental exposure to particulate matter and polycyclic aromatic hydrocarbons and biomonitoring in school environments: A review on indoor and outdoor exposure levels, major sources and health impacts. Environ. Int. 124, 180–204 (2019)

    Article  Google Scholar 

  4. J. Bao, H. Li, Z. Wu, X. Zhang, H. Zhang, Y. Li, et al., Atmospheric carbonyls in a heavy ozone pollution episode at a metropolis in Southwest China: Characteristics, health risk assessment, sources analysis. J. Environ. Sci. 113, 40–54 (2022)

    Article  Google Scholar 

  5. M.D. Galán, Implication of secondary atmospheric pollutants in the air quality: A case-study for ozone, in Air Quality, (IntechOpen, 2021)

    Google Scholar 

  6. World Health Organization (WHO), Sixtyeighth World Health Assembly. A68/18, in Health and the Environment: Addressing the Health Impact of Air Pollution, (2015) Available from: https://apps.who.int/gb/ebwha/pdf_files/WHA68/A68_18-en.pdf

    Google Scholar 

  7. Directive 2008/50/EC of the European Parliament and of the Council on 21 May 2008 on ambient air quality and cleaner air for Europe. Available at: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32008L0050&from=ES. Accessed 25 June 2021

  8. G. Settimo, M. Manigrasso, P. Avino, Indoor air quality: A focus on the European legislation and state-of-the-art research in Italy. Atmosphere 11(4), 370 (2020)

    Article  Google Scholar 

  9. S.O. Baek, Assessing indoor air quality, in Encyclopedia of Environmental Health, (Elsevier, 2019), pp. 191–198. Available at: https://linkinghub.elsevier.com/retrieve/pii/B9780124095489116720

    Chapter  Google Scholar 

  10. N.A. Rosário Filho, M. Urrutia-Pereira, G. D’Amato, L. Cecchi, I.J. Ansotegui, C. Galán, et al., Air pollution and indoor settings. World Allergy Organ. J. 14(1), 100499 (2021)

    Article  Google Scholar 

  11. C. Vornanen-Winqvist, K. Järvi, M.A. Andersson, C. Duchaine, V. Létourneau, O. Kedves, et al., Exposure to indoor air contaminants in school buildings with and without reported indoor air quality problems. Environ. Int. 141, 105781 (2020)

    Article  Google Scholar 

  12. D.E. Schraufnagel, J.R. Balmes, C.T. Cowl, S. De Matteis, S.H. Jung, K. Mortimer, et al., Air pollution and noncommunicable diseases. Chest 155(2), 409–416 (2019)

    Article  Google Scholar 

  13. A. Böhlandt, R. Schierl, J. Diemer, C. Koch, G. Bolte, M. Kiranoglu, et al., High concentrations of cadmium, cerium and lanthanum in indoor air due to environmental tobacco smoke. Sci. Total Environ. 414, 738–741 (2012)

    Article  Google Scholar 

  14. N. Obore, J. Kawuki, J. Guan, S.S. Papabathini, L. Wang, Association between indoor air pollution, tobacco smoke and tuberculosis: An updated systematic review and meta-analysis. Public Health 187, 24–35 (2020)

    Article  Google Scholar 

  15. Y. Zhang, Z. Shen, J. Sun, L. Zhang, B. Zhang, H. Zou, et al., Parent, alkylated, oxygenated and nitrated polycyclic aromatic hydrocarbons in PM2.5 emitted from residential biomass burning and coal combustion: A novel database of 14 heating scenarios. Environ. Pollut. 268, 115881 (2021)

    Article  Google Scholar 

  16. H. Nguyễn-Văn, D. Nguyễn-Thùy, N.T.Á. Nguyễn, T. Streil, J.P. Schimmelmann, K.E. Doiron, et al., Excessive radon-based radiation in indoor air caused by soil building materials in traditional homes on Đồng Văn karst plateau, northern Vietnam. Chemosphere 257, 127119 (2020)

    Article  Google Scholar 

  17. A.C. Syuryavin, S. Park, M.M. Nirwono, S.H. Lee, Indoor radon and thoron from building materials: Analysis of humidity, air exchange rate, and dose assessment. Nucl. Eng. Technol. 52(10), 2370–2378 (2020)

    Article  Google Scholar 

  18. P. Spiru, P.L. Simona, A review on interactions between energy performance of the buildings, outdoor air pollution and the indoor air quality. Energy Procedia 128, 179–186 (2017)

    Article  Google Scholar 

  19. S. Wi, Y. Kang, S. Yang, Y.U. Kim, S. Kim, Hazard evaluation of indoor environment based on long-term pollutant emission characteristics of building insulation materials: An empirical study. Environ. Pollut. 285, 1172238 (2021)

    Article  Google Scholar 

  20. S. Cho, K.T. Lee, Y.I. Choi, S.J. Jung, S.J. Park, S. Bae, et al., Networking human biomarker and hazardous chemical elements from building materials: Systematic literature review and in vivo test. Build. Environ. 192, 107603 (2021)

    Article  Google Scholar 

  21. F. Bitter, B. Müller, D. Müller, Estimation of odour intensity of indoor air pollutants from building materials with a multi-gas sensor system. Build. Environ. 45(1), 197–204 (2010)

    Article  Google Scholar 

  22. G. Hernandez, S.L. Wallis, I. Graves, S. Narain, R. Birchmore, T.A. Berry, The effect of ventilation on volatile organic compounds produced by new furnishings in residential buildings. Atmos. Environ. 6, 100069 (2020)

    Google Scholar 

  23. M.S. Angulo, M. Verriele, M. Nicolas, F. Thevenet, Indoor use of essential oil-based cleaning products: Emission rate and indoor air quality impact assessment based on a realistic application methodology. Atmos. Environ. 246, 118060 (2021)

    Article  Google Scholar 

  24. C.G. Daughton, T.A. Ternes, Pharmaceuticals and personal care products in the environment: Agents of subtle change? Environ. Health Perspect. 107(suppl 6), 907–938 (1999)

    Article  Google Scholar 

  25. T.M. Tran, T.T. Tran-Lam, H.H.T. Mai, L.H.T. Bach, H.M.N. Nguyen, H.T. Trinh, et al., Parabens in personal care products and indoor dust from Hanoi, Vietnam: Temporal trends, emission sources, and non-dietary exposure through dust ingestion. Sci. Total Environ. 761, 143274 (2021)

    Article  Google Scholar 

  26. A. Harbizadeh, S.A. Mirzaee, A.D. Khosravi, F.S. Shoushtari, H. Goodarzi, N. Alavi, et al., Indoor and outdoor airborne bacterial air quality in day-care centers (DCCs) in greater Ahvaz. Iran. Atmos. Environ. 216, 116927 (2019)

    Article  Google Scholar 

  27. A.N. Baghani, R. Rostami, H. Arfaeinia, S. Hazrati, M. Fazlzadeh, M. Delikhoon, BTEX in indoor air of beauty salons: Risk assessment, levels and factors influencing their concentrations. Ecotoxicol. Environ. Saf. 159, 102–108 (2018)

    Article  Google Scholar 

  28. Y. Wang, J. Kuckelkorn, F.Y. Zhao, H. Spliethoff, W. Lang, A state of art of review on interactions between energy performance and indoor environment quality in passive house buildings. Renew. Sust. Energ. Rev. 72, 1303–1319 (2017)

    Article  Google Scholar 

  29. I. Rivas, M. Viana, T. Moreno, M. Pandolfi, F. Amato, C. Reche, et al., Child exposure to indoor and outdoor air pollutants in schools in Barcelona. Spain. Environ. Int. 69, 200–212 (2014)

    Article  Google Scholar 

  30. M.P. Baya, E.B. Bakeas, P.A. Siskos, Volatile organic compounds in the air of 25 Greek homes. Indoor Built Environ. 13(1), 53–61 (2004)

    Article  Google Scholar 

  31. A. Esplugues, F. Ballester, M. Estarlich, S. Llop, V. Fuentes-Leonarte, E. Mantilla, et al., Indoor and outdoor air concentrations of BTEX and determinants in a cohort of one-year old children in Valencia. Spain. Sci. Total Environ. 409(1), 63–69 (2010)

    Article  Google Scholar 

  32. H.C. Menezes, L.C.A. Amorim, Z.L. Cardeal, Sampling of benzene in environmental and exhaled air by solid-phase microextraction and analysis by gas chromatography–mass spectrometry. Anal. Bioanal. Chem. 395(8), 2583–2589 (2009)

    Article  Google Scholar 

  33. A. Srivastava, S. Devotta, Indoor air quality of public places in Mumbai, India in terms of volatile organic compounds. Environ. Monit. Assess. 133(1–3), 127–138 (2007)

    Article  Google Scholar 

  34. A. Bhargava, R.N. Khanna, S.K. Bhargava, S. Kumar, Exposure risk to carcinogenic PAHs in indoor-air during biomass combustion whilst cooking in rural India. Atmos. Environ. 38(28), 4761–4767 (2004)

    Article  Google Scholar 

  35. X. Zhang, B. Chen, X. Fan, Different fuel types and heating approaches impact on the indoor air quality of rural houses in northern China. Procedia Eng. 121, 493–500 (2015)

    Article  Google Scholar 

  36. H.S. Huboyo, S. Tohno, P. Lestari, A. Mizohata, M. Okumura, Characteristics of indoor air pollution in rural mountainous and rural coastal communities in Indonesia. Atmos. Environ. 82, 343–350 (2014)

    Article  Google Scholar 

  37. F. Villanueva, A. Tapia, S. Lara, M. Amo-Salas, Indoor and outdoor air concentrations of volatile organic compounds and NO2 in schools of urban, industrial and rural areas in Central-Southern Spain. Sci. Total Environ. 622-623, 222–235 (2018)

    Article  Google Scholar 

  38. E. Baurès, O. Blanchard, F. Mercier, E. Surget, P. le Cann, A. Rivier, et al., Indoor air quality in two French hospitals: Measurement of chemical and microbiological contaminants. Sci. Total Environ. 642, 168–179 (2018)

    Article  Google Scholar 

  39. A. Hassan, M. Zeeshan, M.F. Bhatti, Indoor and outdoor microbiological air quality in naturally and mechanically ventilated university libraries. Atmos. Pollut. Res. 12, 101136 (2011)

    Article  Google Scholar 

  40. M. Basińska, M. Michałkiewicz, K. Ratajczak, Impact of physical and microbiological parameters on proper indoor air quality in nursery. Environ. Int. 132, 105098 (2019)

    Article  Google Scholar 

  41. J. Saini, M. Dutta, G. Marques, A comprehensive review on indoor air quality monitoring systems for enhanced public health. Sustain. Environ. Res. 30(1), 6 (2020)

    Article  Google Scholar 

  42. Y. Luo, Y. Zhong, L. Pang, Y. Zhao, R. Liang, X. Zheng, The effects of indoor air pollution from solid fuel use on cognitive function among middle-aged and older population in China. Sci. Total Environ. 754, 142460 (2021)

    Article  Google Scholar 

  43. E. Cheek, V. Guercio, C. Shrubsole, S. Dimitroulopoulou, Portable air purification: Review of impacts on indoor air quality and health. Sci. Total Environ. 766, 142585 (2021)

    Article  Google Scholar 

  44. S. Zhu, L. Yang, W. Wang, X. Liu, M. Lu, X. Shen, Optimal-combined model for air quality index forecasting: 5 cities in North China. Environ. Pollut. 243, 842–850 (2018)

    Article  Google Scholar 

  45. M.D. Galán, P.R. Fernández, M.A. Sintes Puertas, M.D. Romero García, L.A. Cristóbal, Characterization and local emission sources for ammonia in an urban environment. Bull. Environ. Contam. Toxicol. 100(4), 593–599 (2018)

    Article  Google Scholar 

  46. P. Ielpo, C. Mangia, G.P. Marra, V. Comite, U. Rizza, V.F. Uricchio, et al., Outdoor spatial distribution and indoor levels of NO2 and SO2 in a high environmental risk site of the South Italy. Sci. Total Environ. 648, 787–797 (2019)

    Article  Google Scholar 

  47. K. Ni, E. Carter, J.J. Schauer, M. Ezzati, Y. Zhang, H. Niu, et al., Seasonal variation in outdoor, indoor, and personal air pollution exposures of women using wood stoves in the Tibetan Plateau: Baseline assessment for an energy intervention study. Environ. Int. 94, 449–457 (2016)

    Article  Google Scholar 

  48. S.F. Hayleeyesus, A.M. Manaye, Microbiological quality of indoor air in university libraries. Asian Pac. J. Trop. Biomed. 4, S312–S317 (2014)

    Article  Google Scholar 

  49. N. Canha, S.M. Almeida, M.D.C. Freitas, H.T.H. Wolterbeek, Assessment of bioaerosols in urban and rural primary schools using passive and active sampling methodologies. Arch. Environ. Prot. 41(4), 11–22 (2015)

    Article  Google Scholar 

  50. I. Demanega, I. Mujan, B.C. Singer, A.S. Anđelković, F. Babich, D. Licina, Performance assessment of low-cost environmental monitors and single sensors under variable indoor air quality and thermal conditions. Build. Environ. 187, 107415 (2021)

    Article  Google Scholar 

  51. H. Shen, W. Hou, Y. Zhu, S. Zheng, S. Ainiwaer, G. Shen, et al., Temporal and spatial variation of PM2.5 in indoor air monitored by low-cost sensors. Sci. Total Environ. 770, 145304 (2021)

    Article  Google Scholar 

  52. D. Galán-Madruga, J.M. Terroba, S.G. dos Santos, R.M. Úbeda, J.P. García-Cambero, Indoor and outdoor PM10-bound PAHs in an urban environment. Similarity of mixtures and source attribution. Bull. Environ. Contam. Toxicol. 105(6), 951–957 (2020)

    Article  Google Scholar 

  53. World Health Organization (WHO). Guidelines for indoor air quality: Selected pollutants. (2010). Available at: https://www.euro.who.int/__data/assets/pdf_file/0009/128169/e94535.pdf. Accessed 16 July 2021

  54. B. Han, Z. Bai, Y. Liu, Y. You, J. Xu, J. Zhou, et al., Characterizations, relationship, and potential sources of outdoor and indoor particulate matter bound polycyclic aromatic hydrocarbons (PAHs) in a community of Tianjin, Northern China. Indoor Air 25(3), 320–328 (2015)

    Article  Google Scholar 

  55. X. Zhu, W. Yu, F. Li, C. Liu, J. Ma, J. Yan, et al., Spatio-temporal distribution and source identification of heavy metals in particle size fractions of road dust from a typical industrial district. Sci. Total Environ. 780, 146357 (2021)

    Article  Google Scholar 

  56. D. Galán-Madruga, A methodological framework for improving air quality monitoring network layout. Applications to environment management. J. Environ. Sci. 102, 138–147 (2021)

    Article  Google Scholar 

  57. Y. Niu, F. Wang, S. Liu, W. Zhang, Source analysis of heavy metal elements of PM2.5 in canteen in a university in winter. Atmos. Environ. 244, 117879 (2021)

    Article  Google Scholar 

  58. Y.W. Li, W.L. Ma, Photocatalytic oxidation technology for indoor air pollutants elimination: A review. Chemosphere 280, 130667 (2021)

    Article  Google Scholar 

  59. H. Kim, T. Kim, W. Hong, S. Tanabe, Concentration of formaldehyde, acetaldehyde, and five volatile organic compounds in indoor air: The clean-healthy house construction standard (South Korea). J. Asian Archit. Build. Eng. 16(3), 633–639 (2017)

    Article  Google Scholar 

  60. D.G. Madruga, R.M. Ubeda, J.M. Terroba, S.G. dos Santos, J.P. García-Cambero, Particle-associated polycyclic aromatic hydrocarbons in a representative urban location (indoor-outdoor) from South Europe: Assessment of potential sources and cancer risk to humans. Indoor Air 29(5), 817–827 (2019)

    Article  Google Scholar 

  61. Z. Li, X. Tong, J.M.W. Ho, T.C.Y. Kwok, G. Dong, K.F. Ho, et al., A practical framework for predicting residential indoor PM2.5 concentration using land-use regression and machine learning methods. Chemosphere 265, 129140 (2021)

    Article  Google Scholar 

  62. A. Fabregat, L. Vázquez, A. Vernet, Using machine learning to estimate the impact of ports and cruise ship traffic on urban air quality: The case of Barcelona. Environ. Model. Softw. 139, 104995 (2021)

    Article  Google Scholar 

  63. Y. Liu, Z. Pang, M. Karlsson, S. Gong, Anomaly detection based on machine learning in IoT-based vertical plant wall for indoor climate control. Build. Environ. 183, 107212 (2020)

    Article  Google Scholar 

  64. S. Yamashita, K. Kume, T. Horiike, N. Honma, M. Fusaya, T. Ohura, et al., A simple method for screening emission sources of carbonyl compounds in indoor air. J. Hazard. Mater. 178(1–3), 370–376 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Galán Madruga .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Madruga, D.G. (2022). A Comprehensive Review on the Indoor Air Pollution Problem, Challenges, and Critical Viewpoints. In: Saini, J., Dutta, M., Marques, G., Halgamuge, M.N. (eds) Integrating IoT and AI for Indoor Air Quality Assessment. Internet of Things. Springer, Cham. https://doi.org/10.1007/978-3-030-96486-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-96486-3_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-96485-6

  • Online ISBN: 978-3-030-96486-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics