Skip to main content

Large Deviations at the Transition for Sums of Weibull-Like Random Variables

  • 229 Accesses

Part of the Lecture Notes in Mathematics book series (SEMPROBAB,volume 2301)

Abstract

Deviation probabilities of the sum Sn = X1 + ⋯ + Xn of independent and identically distributed real-valued random variables have been extensively investigated, in particular when X1 is Weibull-like distributed, i.e. \(\log \mathbb {P}(X\geqslant x) \sim -qx^{1-\epsilon }\) as x →. For instance, A.V. Nagaev formulated exact asymptotic results for \(\mathbb {P}(S_n>x_n)\) when xn > n1∕2 (see, A.V. Nagaev, 1969). In this paper, we derive rough asymptotic results (at logarithmic scale) with shorter proofs relying on classical tools of large deviation theory and giving an explicit formula for the rate function at the transition xn =  Θ(n1∕(1+𝜖)).

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-96409-2_8
  • Chapter length: 19 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   84.99
Price excludes VAT (USA)
  • ISBN: 978-3-030-96409-2
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   109.99
Price excludes VAT (USA)

References

  1. M.A. Arcones, Large and moderate deviations of empirical processes with nonstandard rates. Statist. Probab. Lett. 57(4), 315–326 (2002)

    CrossRef  MathSciNet  Google Scholar 

  2. A.A. Borovkov, Large deviation probabilities for random walks with semiexponential distributions. Sib. Math. J. 41(6), 1290–1324 (2000)

    CrossRef  Google Scholar 

  3. A.A. Borovkov, Asymptotic Analysis of Random Walks, vol. 118 (Cambridge University, Cambridge, 2008)

    CrossRef  Google Scholar 

  4. Cramér, H.: Sur un nouveau théorème-limite de la théorie des probabilités. Actualités Sci. Ind. 736, 5–23 (1938)

    MATH  Google Scholar 

  5. A. Dembo, O. Zeitouni, Large deviations techniques and applications, in Applications of Mathematics (New York), vol. 38, 2nd edn. (Springer, New York, 1998). https://doi.org/10.1007/978-1-4612-5320-4

  6. D. Denisov, A.B. Dieker, V. Shneer, et al., Large deviations for random walks under subexponentiality: the big-jump domain. Ann. Probab. 36(5), 1946–1991 (2008)

    CrossRef  MathSciNet  Google Scholar 

  7. P. Dyszewski, N. Gantert, T. Höfelsauer, The maximum of a branching random walk with stretched exponential tails. arXiv preprint arXiv:2004.03871 (2020)

    Google Scholar 

  8. P. Eichelsbacher, M. Löwe, Moderate deviations for iid random variables. ESAIM Probab. Statist. 7, 209–218 (2003)

    CrossRef  Google Scholar 

  9. W. Feller, Generalization of a probability limit theorem of Cramér. Trans. Am. Math. Soc. 54, 361–372 (1943). https://doi.org/10.2307/1990252

    MathSciNet  MATH  Google Scholar 

  10. N. Gantert, et al., The maximum of a branching random walk with semiexponential increments. Ann. Probab. 28(3), 1219–1229 (2000)

    CrossRef  MathSciNet  Google Scholar 

  11. A. Kinchin, Über einer neuen Grenzwertsatz der Wahrscheinlichkeitsrechnung. Math. Ann. 101, 745–752 (1929)

    CrossRef  MathSciNet  Google Scholar 

  12. J. Lehtomaa, Large deviations of means of heavy-tailed random variables with finite moments of all orders. J. Appl. Probab. 54(1), 66–81 (2017)

    CrossRef  MathSciNet  Google Scholar 

  13. J.V. Linnik, On the probability of large deviations for the sums of independent variables, in Proceedings of the Fourth Berkeley Symposium on Mathematical Statistics and Probability, vol. II (University of California, California, 1961), pp. 289–306

    Google Scholar 

  14. T. Mikosch, A.V. Nagaev, Large deviations of heavy-tailed sums with applications in insurance. Extremes 1(1), 81–110 (1998)

    CrossRef  MathSciNet  Google Scholar 

  15. J.J. Moreau, Fonctionnelles convexes. Séminaire Jean Leray 2, 1–108 (1967)

    Google Scholar 

  16. A.V. Nagaev, Integral limit theorems taking large deviations into account when Cramér’s condition does not hold. i. Theory Probab. Appl. 14(1), 51–64 (1969). https://doi.org/10.1137/1114006

  17. A.V. Nagaev, Integral limit theorems taking large deviations into account when Cramér’s condition does not hold. ii. Theory Probab. Appl. 14(2), 193–208 (1969). https://doi.org/10.1137/1114028

  18. S.V. Nagaev, Large deviations of sums of independent random variables. Ann. Probab. 7(5), 745–789 (1979).

    CrossRef  MathSciNet  Google Scholar 

  19. V.V. Petrov, Generalization of Cramér’s limit theorem. Uspehi Matem. Nauk (N.S.) 9(4(62)), 195–202 (1954)

    Google Scholar 

  20. V.V. Petrov, J. Robinson, Large deviations for sums of independent non identically distributed random variables. Commun. Stat. Theory Methods 37(18), 2984–2990 (2008)

    CrossRef  MathSciNet  Google Scholar 

  21. D. Plachky, J. Steinebach, A theorem about probabilities of large deviations with an application to queuing theory. Period. Math. Hungar. 6(4), 343–345 (1975). https://doi.org/10.1007/BF02017929

    CrossRef  MathSciNet  Google Scholar 

  22. N.V. Smirnov, On the probabilities of large deviations. Mat. Sb. 40, 443–454 (1933)

    Google Scholar 

Download references

Acknowledgements

We would like to thank the referee for his comments and his suggestions which pushed us to make some proofs clearer and shorter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Agnès Lagnoux .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Brosset, F., Klein, T., Lagnoux, A., Petit, P. (2022). Large Deviations at the Transition for Sums of Weibull-Like Random Variables. In: Donati-Martin, C., Lejay, A., Rouault, A. (eds) Séminaire de Probabilités LI. Lecture Notes in Mathematics(), vol 2301. Springer, Cham. https://doi.org/10.1007/978-3-030-96409-2_8

Download citation