Skip to main content

A Solution of Fractional Bio-Chemical Reaction Model by Adomian Decomposition Method

  • Conference paper
  • First Online:
Mathematical Methods for Engineering Applications (ICMASE 2021)

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 384))

  • 419 Accesses

Abstract

This paper focuses on the modeling of the bio-chemical reaction viz anaerobic digestion which is biochemical process of producing biogas which is the biological degradation of biomass. This chemical phenomenon forms as an system of fractional differential equations. Therefore, the attempt has been made to model this bio-medical process and to find its solution by using powerful Adomian decomposition method. For this Caputo fractional operator is used to represent the fractional derivative.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Podlubny I.: Fractional Differential Equations, Academic Press, San Diego, (1999).

    Google Scholar 

  2. Samko S. G., Kilbas A. A., Marichev O. I.: Fractional Integral and Derivatives: Theory and Applications, Gordon and Breach, Yverdon, (1993).

    Google Scholar 

  3. Djouad R., Sportisse B., Audiffren N.: Numerical simulation of aqueous-phase atmospheric models: use of a non-autonomous Rosenbrock method. Atmos. Environ. 36(5), 873–879 (2002).

    Google Scholar 

  4. Jajarmi A., Arshad S., Baleanu D.: A new fractional modelling and control strategy for the outbreak of dengue fever. Physica A Stat. Mech. Appl. 535(1), 1–14 (2019).

    Google Scholar 

  5. Baleanu D., Jajarmi A., Sajjadi S. S., Mozyrska D.: A new fractional model and optimal control of a tumor-immune surveillance with non-singular derivative operator. Chaos Interdiscip. J. Nonlinear Sci. 29(8), 1–15 (2019).

    Google Scholar 

  6. Jajarmi A., Baleanu D., Sajjadi S.S., Asad J. H.: A new feature of the fractional Euler-Lagrange equations for a coupled oscillator using a nonsingular operator approach. Front. Phys. 7(196), 1–9 (2019).

    Google Scholar 

  7. McKendry P.: Energy production from biomass (part 1): overview of biomass. Bioresour. Technol. 83(1), 37–46 (2002).

    Google Scholar 

  8. Twidell J., Weir T.: Renewable energy resources, 2nd edn. Taylor and Francis, New York (2006)

    Google Scholar 

  9. Prokopová Z., Prokop R., Modelling and simulation of dry anaerobic fermentation. In: European Conference on Modelling and Simulation, pp. 200–205 (2010).

    Google Scholar 

  10. Silva M. I., De Bortoli A. L.:Sensitivity analysis for verification of an anaerobic digestion model. Int. J. Appl. Comput. Math. 6(38), 1–12 (2020).

    Google Scholar 

  11. Silva M. I., Bortoli A. L.De :Development of a Model for the Process of Anaerobic Digestion and Its Solution by the Modified Adomian Decomposition Method. Int. J. Appl. Comput. Math. 7(5), 1–14 (2021).

    Google Scholar 

  12. Zieminski K., Frac M.: Methane fermentation process as anaerobic digestion of biomass: Transformations, stages and microorganisms. Afr. J. Biotechnol. 11(18), 4127–4139 (2012).

    Google Scholar 

  13. Daftardar-Gejji V., Bhalekar S: Solving multi-term linear and nonlinear diffusion-wave equations of fractional order by Adomian decomposition. Appl. Math. Comput. 202, 113–120 (2008).

    Google Scholar 

  14. Birajdar G. A.: Numerical solution of time fractional Navier-Stokes equation by discrete Adomian decomposition method. Nonlinear Eng. 3(1), 1–6 (2014).

    Google Scholar 

  15. Birajdar G. A.: An implicit numerical method for semilinear space-time fractional diffusion equation, Walailak J. Sci. & Tech. 12(11), 983–994 (2015).

    Google Scholar 

  16. Birajdar G. A.: Stability of nonlinear fractional diffusion equation. Libertas Mathematica (New Series), 36(1), 1–12 (2016).

    Google Scholar 

  17. Birajdar G. A.: An implicit finite difference method for semilinear time-fractional diffusion equation. Dyn. Cont. Dis. Impul. Syst. Series A: Math. Anal. 27(3a), 209–217 (2020).

    Google Scholar 

  18. Dhaigude D. B., Birajdar G. A.: Numerical solution of system of fractional partial differential equations by discrete Adomian decomposition method. J. Frac. Calc. Appl. 3(12), 1–11 (2012).

    Google Scholar 

  19. Dhaigude D. B., Birajdar G. A.: Numerical solution of fractional partial differential equations by discrete Adomian decomposition method. Adv. Appl. Math. Mech. 6(1), 107–119 (2014)

    Google Scholar 

  20. Adomian G.: Solving Frontier Problems of Physics: The Decomposition Method. Kluwer, Boston, (1994).

    Google Scholar 

  21. Adomian G. :A review of the decomposition method in applied mathematics. J. Math. Anal. Appl. 135, 501–544 (1988).

    Google Scholar 

  22. Birajdar G. A.: A New Approach for Nonlinear Fractional Heat Transfer Model by Adomian Decomposition Method, Springer Proceedings in Mathematics & Statistics, vol. 344, 674-678, Springer, Singapore, https://doi.org/10.1007/978-981-33-4646-8_28.

  23. Daftardar-Gejji V., Jafari H.: Adomian decomposition: a tool for solving a system of fractional differential equations. J. Math. Anal. Appl. 301, 508–518 (2005).

    Google Scholar 

  24. Wazwaz A. M.: Partial Differential Equations and Solitary Waves Theory, Higher Education Press and Springer-Verlag, Beijing and Berlin, (2009).

    Google Scholar 

  25. Dhaigude D. B., Birajdar G. A., Nikam V. R.:Adomain decomposition method for fractional Benjamin-Bona-Mahony-Burger’s equations. Int. J. Appl. Math. Mech. 8(12), 42–51(2012).

    Google Scholar 

  26. Caputo M.: Linear models of dissipition whose Q is almost independent, II, Geo-phys. J. Roy. Astron. 13, 529–5397 (1967).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Birajdar, G.A. (2022). A Solution of Fractional Bio-Chemical Reaction Model by Adomian Decomposition Method. In: Yilmaz, F., Queiruga-Dios, A., Santos Sánchez, M.J., Rasteiro, D., Gayoso Martínez, V., Martín Vaquero, J. (eds) Mathematical Methods for Engineering Applications. ICMASE 2021. Springer Proceedings in Mathematics & Statistics, vol 384. Springer, Cham. https://doi.org/10.1007/978-3-030-96401-6_17

Download citation

Publish with us

Policies and ethics