Skip to main content

Chimeric Antigen Receptor (CAR) T Cell Therapy for Glioblastoma

  • Chapter
  • First Online:
Cancer Immunotherapies

Part of the book series: Cancer Treatment and Research ((CTAR,volume 183))

Abstract

Genetic modification of T cells to express chimeric antigen receptors (CARs) has yielded remarkable clinical outcomes and initiated a novel era for cancer immunotherapy. The impressive clinical responses seen in hematologic malignancies have led to the investigation of CAR T cells in solid tumors but attaining similar results has been challenging to date. Glioblastoma (GBM) presents a particularly challenging malignancy for treatment and despite some progress in treatments over the past decade, prognosis remains poor for the vast majority of patients. However, recent data support the clinical efficacy and safety of CAR T cell therapy in GBM. In this review, common challenges associated with treating GBM will be discussed in addition to how CAR T cells can overcome such barriers. Additionally, emerging techniques of optimizing CAR T cell therapy for GBM will be emphasized, highlighting the prospective promise of cellular immunotherapy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Park JH et al (2018) Long-term follow-up of CD19 CAR therapy in acute lymphoblastic leukemia. N Engl J Med 378:449–459

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Maude SL et al (2018) Tisagenlecleucel in children and young adults with B-cell lymphoblastic leukemia. N Engl J Med 378:439–448

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Brentjens RJ et al (2013) CD19-targeted T cells rapidly induce molecular remissions in adults with chemotherapy-refractory acute lymphoblastic leukemia. Sci Transl Med 5:177ra38–177ra38

    Google Scholar 

  4. Schuster SJ et al (2017) Chimeric antigen receptor T cells in refractory B-cell lymphomas. N Engl J Med 377:2545–2554

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Neelapu SS et al (2017) Axicabtagene ciloleucel CAR T-cell therapy in refractory large B-cell lymphoma. N Engl J Med 377:2531–2544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Schuster SJ et al (2019) Tisagenlecleucel in adult relapsed or refractory diffuse large B-cell lymphoma. N Engl J Med 380:45–56

    Article  CAS  PubMed  Google Scholar 

  7. Wang M et al (2020) KTE-X19 CAR T-cell therapy in relapsed or refractory mantle-cell lymphoma. N Engl J Med 382:1331–1342

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Raje N et al (2019) Anti-BCMA CAR T-cell therapy bb2121 in relapsed or refractory multiple myeloma. N Engl J Med 380:1726–1737

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Sadelain M, Brentjens R, Rivière I (2013) The basic principles of chimeric antigen receptor design. Cancer Discov 3:388–398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Srivastava S, Riddell SR (2015) Engineering CAR-T cells: design concepts. Trends Immunol 36:494–502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Stoiber S et al (2019) Limitations in the design of chimeric antigen receptors for cancer therapy. Cells 8:472

    Article  CAS  PubMed Central  Google Scholar 

  12. Whilding LM, Maher J (2015) CAR T-cell immunotherapy: the path from the by-road to the freeway? Mol Oncol 9:1994–2018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Zhang C, Liu J, Zhong JF, Zhang X (2017) Engineering CAR-T cells. Biomark Res 5

    Google Scholar 

  14. Ostrom QT et al (2019) CBTRUS Statistical report: primary brain and other central nervous system tumors diagnosed in the United States in 2012–2016. Neuro Oncol 21:V1–V100

    Article  PubMed  PubMed Central  Google Scholar 

  15. Silantyev AS et al (2019) Current and future trends on diagnosis and prognosis of glioblastoma: from molecular biology to proteomics. Cells 8

    Google Scholar 

  16. Hegi ME et al (2005) MGMT Gene silencing and benefit from temozolomide in glioblastoma. N Engl J Med 352:997–1003

    Article  CAS  PubMed  Google Scholar 

  17. Oldrini B et al (2020) MGMT genomic rearrangements contribute to chemotherapy resistance in gliomas. Nat Commun 11:1–10

    Article  CAS  Google Scholar 

  18. Tamimi AF, Juweid M (2017) Epidemiology and outcome of glioblastoma. In: Glioblastoma, Codon Publications, pp 143–153. https://doi.org/10.15586/codon.glioblastoma.2017.ch8

  19. Rafiq S, Hackett CS, Brentjens RJ (2020) Engineering strategies to overcome the current roadblocks in CAR T cell therapy. Nat Rev Clin Oncol 17:147–167

    Article  PubMed  Google Scholar 

  20. Theodorakis PE, Müller EA, Craster RV, Matar OK (2016) Physical insights into the blood-brain barrier translocation mechanisms

    Google Scholar 

  21. Pardridge WM (2005) The blood-brain barrier: bottleneck in brain drug development. NeuroRx 2:3–14

    Article  PubMed  PubMed Central  Google Scholar 

  22. Dufresne RL (2002) Brain drug targeting: the future of brain drug development. Ann Pharmacother 36:733–734

    Article  Google Scholar 

  23. Schreck KC, Grossman SA (2018) Role of temozolomide in the treatment of cancers involving the central nervous system. Oncol (Williston Park, N.Y.) 32

    Google Scholar 

  24. Bae SH et al (2014) Toxicity profile of temozolomide in the treatment of 300 malignant glioma patients in Korea. J Korean Med Sci 29:980–984

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Sarkaria JN et al (2018) Is the blood-brain barrier really disrupted in all glioblastomas? a critical assessment of existing clinical data. Neuro Oncol 20:184–191

    Article  CAS  PubMed  Google Scholar 

  26. Agarwal S, Manchanda P, Vogelbaum MA, Ohlfest JR, Elmquist WF (2013) Function of the blood-brain barrier and restriction of drug delivery to invasive glioma cells: findings in an orthotopic rat xenograft model of glioma. Drug Metab Dispos 41:33–39

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Mäkinen T (2019) Lymphatic vessels at the base of the mouse brain provide direct drainage to the periphery. Nat 572:34–35

    Article  CAS  Google Scholar 

  28. Babbe H et al (2000) Clonal expansions of CD8+ T cells dominate the T cell infiltrate in active multiple sclerosis lesions as shown by micromanipulation and single cell polymerase chain reaction. J Exp Med 192:393–404

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Jacobsen M et al (2002) Oligoclonal expansion of memory CD8+ T cells in cerebrospinal fluid from multiple sclerosis patients. Brain 125:538–550

    Article  PubMed  Google Scholar 

  30. Galea I et al (2007) An antigen-specific pathway for CD8 T cells across the blood-brain barrier. J Exp Med 204:2023–2030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Wilson EH, Weninger W, Hunter CA (2010) Trafficking of immune cells in the central nervous system. J Clin Invest 120:1368–1379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Santomasso BD et al (2018) Clinical and biological correlates of neurotoxicity associated with CAR T-cell therapy in patients with B-cell acute lymphoblastic leukemia. Cancer Discov 8:958–971

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Abramson JS et al (2018) Updated safety and long term clinical outcomes in TRANSCEND NHL 001, pivotal trial of lisocabtagene maraleucel (JCAR017) in R/R aggressive NHL. J Clin Oncol 36:7505–7505

    Article  Google Scholar 

  34. Gardner RA et al (2017) Intent-to-treat leukemia remission by CD19 CAR T cells of defined formulation and dose in children and young adults. Blood 129:3322–3331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Lee DW et al (2015) T cells expressing CD19 chimeric antigen receptors for acute lymphoblastic leukaemia in children and young adults: a phase 1 dose-escalation trial. Lancet 385:517–528

    Article  CAS  PubMed  Google Scholar 

  36. Norelli M et al (2018) Monocyte-derived IL-1 and IL-6 are differentially required for cytokine-release syndrome and neurotoxicity due to CAR T cells. Nat Med 24:739–748

    Article  CAS  PubMed  Google Scholar 

  37. Grupp SA et al (2013) Chimeric antigen receptor-modified T cells for acute lymphoid leukemia. N Engl J Med 368:1509–1518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Maude SL et al (2014) Chimeric antigen receptor T cells for sustained remissions in leukemia. N Engl J Med 371:1507–1517

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Parker KR et al (2020) Single-cell analyses identify brain mural cells expressing CD19 as potential off-tumor targets for CAR-T immunotherapies. Cell 183:126-142.e17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Van Rooij N et al (2013) Tumor exome analysis reveals neoantigen-specific T-cell reactivity in an ipilimumab-responsive melanoma. J Clin Oncol 31

    Google Scholar 

  41. McGranahan T, Therkelsen KE, Ahmad S, Nagpal S (2019) Current state of immunotherapy for treatment of glioblastoma. Curr Treat Options Oncol 20

    Google Scholar 

  42. Schartner JM et al (2005) Impaired capacity for upregulation of MHC class II in tumor-associated microglia. Glia 51:279–285

    Article  PubMed  Google Scholar 

  43. Badie B, Bartley B, Schartner J (2002) Differential expression of MHC class II and B7 costimulatory molecules by microglia in rodent gliomas. J Neuroimmunol 133:39–45

    Article  CAS  PubMed  Google Scholar 

  44. Leone P et al (2013) MHC class I antigen processing and presenting machinery: organization, function, and defects in tumor cells. J Nat Cancer Inst 105:1172–1187

    Article  CAS  PubMed  Google Scholar 

  45. Zagzag D et al (2005) Downregulation of major histocompatibility complex antigens in invading glioma cells: stealth invasion of the brain. Lab Invest 85:328–341

    Article  CAS  PubMed  Google Scholar 

  46. Gomez GG, Kruse CA (2006) Mechanisms of malignant glioma immune resistance and sources of immunosuppression. Gene Ther Mol Biol 10:133–146

    PubMed  PubMed Central  Google Scholar 

  47. Chmielewski M, Hombach AA, Abken H (2013) Antigen-specific T-cell activation independently of the MHC: chimeric antigen receptor-redirected T cells. Front Immunol 4

    Google Scholar 

  48. Hombach A et al (2001) CD4+ T cells engrafted with a recombinant immunoreceptor efficiently lyse target cells in a MHC antigen- and fas-independent fashion. J Immunol 167:1090–1096

    Article  CAS  PubMed  Google Scholar 

  49. Yu S et al (2017) Chimeric antigen receptor T cells: a novel therapy for solid tumors. J Hematol Oncol 10

    Google Scholar 

  50. Charalambous C, Hofman FM, Chen TC (2005) Functional and phenotypic differences between glioblastoma multiforme-derived and normal human brain endothelial cells. J Neurosurg 102:699–705

    Article  PubMed  Google Scholar 

  51. Hida K et al (2004) Tumor-associated endothelial cells with cytogenetic abnormalities. Cancer Res 64:8249–8255

    Article  CAS  PubMed  Google Scholar 

  52. Munoz JL, Walker ND, Scotto KW, Rameshwar P (2015) Temozolomide competes for P-glycoprotein and contributes to chemoresistance in glioblastoma cells. Cancer Lett 367:69–75

    Article  CAS  PubMed  Google Scholar 

  53. Haseley A et al (2012) Extracellular matrix protein CCN1 limits oncolytic efficacy in glioma. Cancer Res 72:1353–1362

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Yeh W-L, Lu D-Y, Liou H-C, Fu W-M (2012) A forward loop between glioma and microglia: glioma-derived extracellular matrix-activated microglia secrete IL-18 to enhance the migration of glioma cells. J Cell Physiol 227:558–568

    Article  CAS  PubMed  Google Scholar 

  55. Adams DJ, Morgan LR (2011) Tumor physiology and charge dynamics of anticancer drugs: implications for camptothecin-based drug development. Curr Med Chem 18:1367–1372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Joseph JV et al (2015) Hypoxia enhances migration and invasion in glioblastoma by promoting a mesenchymal shift mediated by the HIF1α-ZEB1 axis. Cancer Lett 359:107–116

    Article  CAS  PubMed  Google Scholar 

  57. Facciabene A et al (2011) Tumour hypoxia promotes tolerance and angiogenesis via CCL28 and T reg cells. Nature 475:226–230

    Article  CAS  PubMed  Google Scholar 

  58. Hjelmeland AB et al (2011) Acidic stress promotes a glioma stem cell phenotype. Cell Death Differ 18:829–840

    Article  CAS  PubMed  Google Scholar 

  59. Eyler CE, Rich JN (2008) Survival of the fittest: cancer stem cells in therapeutic resistance and angiogenesis. J Clin Oncol 26:2839–2845

    Article  CAS  PubMed  Google Scholar 

  60. Liu A, Hou C, Chen H, Zong X, Zong P (2016) Genetics and epigenetics of glioblastoma: applications and overall incidence of IDH1 mutation. Front Oncol 6:1

    Article  Google Scholar 

  61. de la Iglesia N et al (2008) Identification of a PTEN-regulated STAT3 brain tumor suppressor pathway. Genes Dev 22:449–462

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Piperi C, Papavassiliou KA, Papavassiliou AG (2019) Pivotal role of STAT3 in shaping glioblastoma immune microenvironment. Cells 8:1398

    Article  CAS  PubMed Central  Google Scholar 

  63. Ferguson SD, Srinivasan VM, Heimberger AB (2015) The role of STAT3 in tumor-mediated immune suppression. J Neuro-Oncol 123(3):385–394

    Article  CAS  Google Scholar 

  64. Krawczyk CM et al (2010) Toll-like receptor–induced changes in glycolytic metabolism regulate dendritic cell activation. Blood 115:4742

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Kortylewski M et al (2005) Inhibiting Stat3 signaling in the hematopoietic system elicits multicomponent antitumor immunity. Nat Med 11:1314–1321

    Article  CAS  PubMed  Google Scholar 

  66. Wing K, Sakaguchi S (2010) Regulatory T cells exert checks and balances on self tolerance and autoimmunity. Nat Immunol 11:7–13

    Article  CAS  PubMed  Google Scholar 

  67. Humphries W, Wei J, Sampson JH, Heimberger AB (2010) The role of tregs in glioma-mediated immunosuppression: potential target for intervention. Neurosurg Clin N Am 21:125–137

    Article  PubMed  PubMed Central  Google Scholar 

  68. Zhang E, Gu J, Xu H (2018) Prospects for chimeric antigen receptor-modified T cell therapy for solid tumors. Mol Cancer 17

    Google Scholar 

  69. Mi Y et al (2020) The emerging role of myeloid-derived suppressor cells in the glioma immune suppressive microenvironment. Front Immunol 11:737

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Liu Y, Wei J, Guo G, Zhou J (2015) Norepinephrine-induced myeloid-derived suppressor cells block T-cell responses via generation of reactive oxygen species. Immunopharmacol Immunotoxicol 37:359–365

    Article  PubMed  CAS  Google Scholar 

  71. O’Rourke DM et al (2017) A single dose of peripherally infused EGFRvIII-directed CAR T cells mediates antigen loss and induces adaptive resistance in patients with recurrent glioblastoma. Sci Transl Med 9

    Google Scholar 

  72. Goff SL et al (2019) Pilot trial of adoptive transfer of chimeric antigen receptor-Transduced t cells targeting EGFRVIII in patients with glioblastoma. J Immunother 42:126–135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Durgin JS et al (2021) Case report: prolonged survival following EGFRvIII CAR T cell treatment for recurrent glioblastoma. Front Oncol 11

    Google Scholar 

  74. Ahmed N et al (2015) Autologous HER2 CMV bispecific CAR T cells are safe and demonstrate clinical benefit for glioblastoma in a Phase I trial. J Immunother Cancer 3:4–8

    Article  Google Scholar 

  75. Brown CE et al (2015) Bioactivity and safety of IL13Rα2-redirected chimeric antigen receptor CD8+ T cells in patients with recurrent glioblastoma. Clin Cancer Res 21:4062–4072

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Lin Q et al (2021) First-in-human trial of EphA2-redirected CAR T-cells in patients With recurrent glioblastoma: a preliminary report of three cases at the starting dose. Front Oncol 11

    Google Scholar 

  77. Tang X et al (2021) Administration of B7-H3 targeted chimeric antigen receptor-T cells induce regression of glioblastoma. Signal Transduct Target Ther 6

    Google Scholar 

  78. Heimberger AB et al (2005) Prognostic effect of epidermal growth factor receptor and EGFRvIII in glioblastoma multiforme patients. Clin Cancer Res 11:1462–1466

    Article  CAS  PubMed  Google Scholar 

  79. Sampson JH et al (2014) EGFRvIII mCAR-modified T-cell therapy cures mice with established intracerebral glioma and generates host immunity against tumor-antigen loss. Clin Cancer Res 20:972–984

    Article  CAS  PubMed  Google Scholar 

  80. Suryadevara CM et al (2018) Temozolomide lymphodepletion enhances CAR abundance and correlates with antitumor efficacy against established glioblastoma. 7:1434464. https://doi.org/10.1080/2162402X.2018

  81. Ravanpay AC et al (2019) EGFR806-CAR T cells selectively target a tumor-restricted EGFR epitope in glioblastoma. Oncotarget 10:7080–7095

    Article  PubMed  PubMed Central  Google Scholar 

  82. Abbott RC et al (2021) Novel high-affinity EGFRvIII-specific chimeric antigen receptor T cells effectively eliminate human glioblastoma. Clin Transl Immunol 10

    Google Scholar 

  83. Johnson LA et al (2015) Rational development and characterization of humanized anti-EGFR variant III chimeric antigen receptor T cells for glioblastoma. Sci Transl Med 7:275ra22

    Google Scholar 

  84. Jian GZ et al (2007) Antigenic profiling of glioma cells to generate allogeneic vaccines or dendritic cell-based therapeutics. Clin Cancer Res 13:566–575

    Article  Google Scholar 

  85. Ahmed N et al (2010) HER2-specific T cells target primary glioblastoma stem cells and induce regression of autologous experimental tumors. Clin Cancer Res 16:474–485

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Ahmed N et al (2017) HER2-specific chimeric antigen receptor–modified virus-specific T cells for progressive glioblastoma: a phase 1 dose-escalation trial. JAMA Oncol 3:1094–1101

    Article  PubMed  PubMed Central  Google Scholar 

  87. Jarboe JS, Johnson KR, Choi Y, Lonser RR, Park JK (2007) Expression of IL-13 receptor α2 in glioblastoma multiforme: implications for targeted therapies. Cancer Res 67:7983–7986

    Article  CAS  PubMed  Google Scholar 

  88. Pituch KC et al (2018) Adoptive transfer of IL13Rα2-specific chimeric antigen receptor T cells creates a pro-inflammatory environment in glioblastoma. Mol Ther. https://doi.org/10.1016/j.ymthe.2018.02.001

    Article  PubMed  PubMed Central  Google Scholar 

  89. Brown CE et al (2012) Stem-like tumor-initiating cells isolated from IL13Rα2 expressing gliomas are targeted and killed by IL13-zetakine-redirected T cells. Clin Cancer Res 18:2199–2209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Wang D et al (2020) Chlorotoxin-directed CAR T cells for specific and effective targeting of glioblastoma. Sci Transl Med 12

    Google Scholar 

  91. Rousso-Noori L et al (2021) P32-specific CAR T cells with dual antitumor and antiangiogenic therapeutic potential in gliomas. Nat Commun 12

    Google Scholar 

  92. An Z et al (2021) Antitumor activity of the third generation EphA2 CAR-T cells against glioblastoma is associated with interferon gamma induced PD-L1. Oncoimmunology 10

    Google Scholar 

  93. Tang X et al (2019) B7–H3 as a novel CAR-T therapeutic target for glioblastoma. Mol Ther Oncolytics 14:279–287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Fujita M et al (2011) COX-2 blockade suppresses gliomagenesis by inhibiting myeloid-derived suppressor cells. Cancer Res 71:2664–2674

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Yang M et al (2021) Dual effects of cyclooxygenase inhibitors in combination with CD19.CAR-T cell immunotherapy. Front Immunol 0:1895

    Google Scholar 

  96. Xia L et al (2021) BRD4 inhibition boosts the therapeutic effects of epidermal growth factor receptor-targeted chimeric antigen receptor T cells in glioblastoma. Mol Ther. https://doi.org/10.1016/J.YMTHE.2021.05.019

    Article  PubMed  Google Scholar 

  97. Uricoli B et al (2021) Engineered cytokines for cancer and autoimmune disease immunotherapy. Adv Healthc Mater 10

    Google Scholar 

  98. Jin J, Cheng J, Huang M, Luo H, Zhou J (2020) Fueling chimeric antigen receptor T cells with cytokines. Am J Cancer Res 10:4038

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Evans AN, Lin HK, Hossian AKMN, Rafiq S (2021) Using Adoptive cellular therapy for localized protein secretion. Cancer J 27:159–167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Agliardi G et al (2021) Intratumoral IL-12 delivery empowers CAR-T cell immunotherapy in a pre-clinical model of glioblastoma. Nat Commun 12

    Google Scholar 

  101. Huang J et al (2021) IL-7-loaded oncolytic adenovirus improves CAR-T cell therapy for glioblastoma. Cancer Immunol Immunother 70:2453–2465

    Article  CAS  PubMed  Google Scholar 

  102. Li Y et al (2020) Arming anti-EGFRvIII CAR-T with TGFβ trap improves antitumor efficacy in glioma mouse models. Front Oncol 10

    Google Scholar 

  103. Peng W et al (2012) PD-1 blockade enhances T-cell migration to tumors by elevating IFN-γ inducible chemokines. Cancer Res 72:5209–5218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Bouffet E et al (2016) Immune checkpoint inhibition for hypermutant glioblastoma multiforme resulting from germline biallelic mismatch repair deficiency 34:2206–2211. https://doi.org/10.1200/JCO.2016.66.6552

  105. Choi BD et al (2019) CRISPR-Cas9 disruption of PD-1 enhances activity of universal EGFRvIII CAR T cells in a preclinical model of human glioblastoma. J Immunother Cancer 7(1):1–8

    Article  Google Scholar 

  106. Zhu H, You Y, Shen Z, Shi L (2020) EGFRvIII-CAR-T cells with PD-1 knockout have improved anti-glioma activity. Pathol Oncol Res 26:2135–2141

    Article  CAS  PubMed  Google Scholar 

  107. Adusumilli PS et al (2021) A phase I trial of regional mesothelin-targeted CAR T-cell therapy in patients with malignant pleural disease, in combination with the anti-PD-1 agent pembrolizumab. Cancer Discov Candisc 0407.2021. https://doi.org/10.1158/2159-8290.CD-21-0407

  108. Chong EA et al (2021) Pembrolizumab for B-cell lymphomas relapsing after or refractory to CD19-directed CAR T-cell therapy. Blood. https://doi.org/10.1182/BLOOD.2021012634

    Article  PubMed  PubMed Central  Google Scholar 

  109. Akhavan D et al (2019) CAR T cells for brain tumors: lessons learned and road ahead. Immunol Rev 290:60–84

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Del Vecchio CA et al (2013) EGFRvIII gene rearrangement is an early event in glioblastoma tumorigenesis and expression defines a hierarchy modulated by epigenetic mechanisms. Oncogene 32:2670–2681

    Article  PubMed  CAS  Google Scholar 

  111. Aubry M et al (2015) From the core to beyond the margin: a genomic picture of glioblastoma intratumor heterogeneity. Oncotarget 6:12094–12109

    Article  PubMed  PubMed Central  Google Scholar 

  112. Hegde M et al (2013) Combinational targeting offsets antigen escape and enhances effector functions of adoptively transferred T cells in glioblastoma. Mol Ther 21:2087–2101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Hegde M et al (2016) Tandem CAR T cells targeting HER2 and IL13Rα2 mitigate tumor antigen escape. J Clin Invest 126:3036–3052

    Article  PubMed  PubMed Central  Google Scholar 

  114. Bielamowicz K et al (2018) Trivalent CAR T cells overcome interpatient antigenic variability in glioblastoma. Neuro Oncol 20:506–518

    Article  CAS  PubMed  Google Scholar 

  115. Choe JH et al (2021) SynNotch-CAR T cells overcome challenges of specificity, heterogeneity, and persistence in treating glioblastoma. Sci Transl Med 13

    Google Scholar 

  116. Huehls AM, Coupet TA, Sentman CL (2015) Bispecific T-cell engagers for cancer immunotherapy. Immunol Cell Biol 93:290–296

    Article  CAS  PubMed  Google Scholar 

  117. Wing A et al (2018) Improving CART-cell therapy of solid tumors with oncolytic virus–driven production of a bispecific T-cell engager. Cancer Immunol Res 6:605–616

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Choi BD et al (2019) CAR-T cells secreting BiTEs circumvent antigen escape without detectable toxicity. Nat Biotechnol 37:1049–1058

    Article  CAS  PubMed  Google Scholar 

  119. Brown CE et al (2016) Regression of glioblastoma after chimeric antigen receptor T-cell therapy. N Engl J Med 375:2561–2569

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Fu W et al (2019) CAR exosomes derived from effector CAR-T cells have potent antitumour effects and low toxicity. Nat Commun 10:1–12

    Article  CAS  Google Scholar 

  121. Alvarez-Erviti L et al (2011) Delivery of siRNA to the mouse brain by systemic injection of targeted exosomes. Nat Biotechnol 29:341–345

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sarwish Rafiq .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Verma, A., Rafiq, S. (2022). Chimeric Antigen Receptor (CAR) T Cell Therapy for Glioblastoma. In: Hays, P. (eds) Cancer Immunotherapies. Cancer Treatment and Research, vol 183. Springer, Cham. https://doi.org/10.1007/978-3-030-96376-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-96376-7_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-96375-0

  • Online ISBN: 978-3-030-96376-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics