Abstract
For autonomous vehicles to navigate safely through traffic, it is necessary to understand the status of the surrounding environment such as traffic lights and traffic signs present. The traffic sign detection algorithms designed miss to recognize the signs under occlusion scenarios. Therefore, including tracking along with the detection algorithm helps in increasing the detection rate and safe manoeuvring. The paper presents tracking by detection method for tracking multiple traffic signs in image coordinates with no ego motion information present. The existing tracking methods such as the Kalman filter fails to track multiple traffic signs in image coordinates due to camera perspective projection. Assuming the movement of the camera mounted on the vehicle is linear, the prediction of traffic sign location is made robustly by modeling the motion and using Mahalanobis distance measure and Hungarian Association algorithm the predictions and detections are associated. The proposed tracking method achieved a decent accuracy of 92.3%, and a precision of 96.4% when compared with other State-of-the-art methods.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Sethi, I., Jain, R.: Finding trajectories of feature points in a monocular image sequence. IEEE Trans. Patt. Analy. Mach. Intell. 9(1), 56–73 (1987)
Rangarajan, K., Shah, M.: Establishing motion correspondence. In: Conference Vision Graphics Image Process, vol. 54, no. 1, pp. 56–73 1991
Veenman, C.J., Reinders, M.J.T., Backer, E.: Resolving motion correspondence for densely moving points. IEEE Trans. Pattern Anal. Mach. Intell. 23(1), 54–72 (2001)
Kalman, R.E.: A new approach to linear filtering and prediction problems. J. Basic Eng. 82(1), 35–45 (1960)
Broida, T., Chellappa, R.: Estimation of object motion parameters from noisy images. IEEE Trans. Patt. Analy. Mach. Intell. 8(1), 90–99 (1986)
Tanizaki, H.: non-gaussian state-space modeling of nonstationary time series. J. Am. Statist. Assoc. 82, 1032–1063 (1987)
Kim, C., Li, F., Ciptadi, A., Rehg, J.M.: Multiple hypothesis tracking revisited. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 4696–4704 (2015)
Gorji, A., Menhaj, M.B., Shiry, S.: Multiple target tracking for mobile robots using the JPDAF algorithm. In: Koutsojannis, C., Sirmakessis, S. (eds.) Tools and Applications with Artificial Intelligence, pp. 51–68. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-540-88069-1_5
Chang, Y.L., Aggarwal, J.K.: 3D structure reconstruction from an ego-motion sequence using statistical estimation and detection theory. In: Workshop on Visual Motion, pp. 268–273 (1991)
Rasmussen, C., Hager, G.: Probabilistic data association methods for tracking complex visual objects. IEEE Trans. Patt. Analy. Mach. Intell. 23(6), 560–576 (2001)
Hue, C., Cadre, J.L., Prez, P.: Sequential Monte Carlo methods for multiple target tracking and data fusion. IEEE Trans. Sign. Process. 50(2), 309–325 (2002)
Bewley, A., Ge, Z., Ott, L., Ramos, F., Upcroft, B.: Simple online and real-time tracking. In: 2016 IEEE International Conference on Image Processing (ICIP), pp. 3464–3468. IEEE (2016)
Wojke, N., Bewley, A., Paulus, D.: Simple online and realtime tracking with a deep association metric. In: 2017 IEEE International Conference on Image Processing (ICIP), pp. 3645–3649. IEEE (2017)
Lu, Y., Lu, C., Tang, C.-K.: Online video object detection using association LSTM. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2344–2352 (2017)
Babaee, M., Li, Z., Rigoll, G.: Occlusion handling in tracking multiple people using RNN. In: 2018 25th IEEE International Conference on Image Processing (ICIP), pp. 2715–2719. IEEE (2018)
Kalata, P.: The tracking index: a generalized parameter for alpha and beta target trackers. IEEE Trans. Aerosp. Electron. Syst. AES-20, 174–182 (1984)
Liu, W., et al.: SSD: single shot MultiBox detector. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9905, pp. 21–37. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46448-0_2
Mahalanobis, P.C.: On the generalized distance in statistics. National Institute of Science of India (1936)
Kuhn, H.W.: The Hungarian method for the assignment problem. Nav. Res. Logist. Q. 2(1–2), 83–97 (1955)
Bernardin, K., Stiefelhagen, R.: Evaluating multiple object tracking performance: the CLEAR MOT metrics. EURASIP J. Image Video Process. 2008, 1–10 (2008)
Motion Based Multi Object Tracking Example, The MathWorks, Inc. (2016–2018)
Leal-Taixé, L., Milan, A., Reid, I., Roth, S., Schindler, K.: MOTChallenge 2015: Towards a Benchmark for Multi-Target Tracking, arXiv preprint (2015)
Jawad, M., Mihaylova, L., Canagarajah, N., Bull, D.: Multiple Object Tracking Using Particle Filters. IEEE paper # 1280 (2016)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Hegde, K, S., Kannan, S. (2022). Real Time Tracking of Traffic Signs for Autonomous Driving Using Monocular Camera Images. In: Abraham, A., Gandhi, N., Hanne, T., Hong, TP., Nogueira Rios, T., Ding, W. (eds) Intelligent Systems Design and Applications. ISDA 2021. Lecture Notes in Networks and Systems, vol 418. Springer, Cham. https://doi.org/10.1007/978-3-030-96308-8_66
Download citation
DOI: https://doi.org/10.1007/978-3-030-96308-8_66
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-96307-1
Online ISBN: 978-3-030-96308-8
eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)