Skip to main content

Real Time Tracking of Traffic Signs for Autonomous Driving Using Monocular Camera Images

  • Conference paper
  • First Online:
Intelligent Systems Design and Applications (ISDA 2021)

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 418))

  • 1946 Accesses

Abstract

For autonomous vehicles to navigate safely through traffic, it is necessary to understand the status of the surrounding environment such as traffic lights and traffic signs present. The traffic sign detection algorithms designed miss to recognize the signs under occlusion scenarios. Therefore, including tracking along with the detection algorithm helps in increasing the detection rate and safe manoeuvring. The paper presents tracking by detection method for tracking multiple traffic signs in image coordinates with no ego motion information present. The existing tracking methods such as the Kalman filter fails to track multiple traffic signs in image coordinates due to camera perspective projection. Assuming the movement of the camera mounted on the vehicle is linear, the prediction of traffic sign location is made robustly by modeling the motion and using Mahalanobis distance measure and Hungarian Association algorithm the predictions and detections are associated. The proposed tracking method achieved a decent accuracy of 92.3%, and a precision of 96.4% when compared with other State-of-the-art methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Sethi, I., Jain, R.: Finding trajectories of feature points in a monocular image sequence. IEEE Trans. Patt. Analy. Mach. Intell. 9(1), 56–73 (1987)

    Article  Google Scholar 

  2. Rangarajan, K., Shah, M.: Establishing motion correspondence. In: Conference Vision Graphics Image Process, vol. 54, no. 1, pp. 56–73 1991

    Google Scholar 

  3. Veenman, C.J., Reinders, M.J.T., Backer, E.: Resolving motion correspondence for densely moving points. IEEE Trans. Pattern Anal. Mach. Intell. 23(1), 54–72 (2001)

    Article  Google Scholar 

  4. Kalman, R.E.: A new approach to linear filtering and prediction problems. J. Basic Eng. 82(1), 35–45 (1960)

    Article  MathSciNet  Google Scholar 

  5. Broida, T., Chellappa, R.: Estimation of object motion parameters from noisy images. IEEE Trans. Patt. Analy. Mach. Intell. 8(1), 90–99 (1986)

    Article  Google Scholar 

  6. Tanizaki, H.: non-gaussian state-space modeling of nonstationary time series. J. Am. Statist. Assoc. 82, 1032–1063 (1987)

    MathSciNet  Google Scholar 

  7. Kim, C., Li, F., Ciptadi, A., Rehg, J.M.: Multiple hypothesis tracking revisited. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 4696–4704 (2015)

    Google Scholar 

  8. Gorji, A., Menhaj, M.B., Shiry, S.: Multiple target tracking for mobile robots using the JPDAF algorithm. In: Koutsojannis, C., Sirmakessis, S. (eds.) Tools and Applications with Artificial Intelligence, pp. 51–68. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-540-88069-1_5

    Chapter  Google Scholar 

  9. Chang, Y.L., Aggarwal, J.K.: 3D structure reconstruction from an ego-motion sequence using statistical estimation and detection theory. In: Workshop on Visual Motion, pp. 268–273 (1991)

    Google Scholar 

  10. Rasmussen, C., Hager, G.: Probabilistic data association methods for tracking complex visual objects. IEEE Trans. Patt. Analy. Mach. Intell. 23(6), 560–576 (2001)

    Article  Google Scholar 

  11. Hue, C., Cadre, J.L., Prez, P.: Sequential Monte Carlo methods for multiple target tracking and data fusion. IEEE Trans. Sign. Process. 50(2), 309–325 (2002)

    Article  Google Scholar 

  12. Bewley, A., Ge, Z., Ott, L., Ramos, F., Upcroft, B.: Simple online and real-time tracking. In: 2016 IEEE International Conference on Image Processing (ICIP), pp. 3464–3468. IEEE (2016)

    Google Scholar 

  13. Wojke, N., Bewley, A., Paulus, D.: Simple online and realtime tracking with a deep association metric. In: 2017 IEEE International Conference on Image Processing (ICIP), pp. 3645–3649. IEEE (2017)

    Google Scholar 

  14. Lu, Y., Lu, C., Tang, C.-K.: Online video object detection using association LSTM. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2344–2352 (2017)

    Google Scholar 

  15. Babaee, M., Li, Z., Rigoll, G.: Occlusion handling in tracking multiple people using RNN. In: 2018 25th IEEE International Conference on Image Processing (ICIP), pp. 2715–2719. IEEE (2018)

    Google Scholar 

  16. Kalata, P.: The tracking index: a generalized parameter for alpha and beta target trackers. IEEE Trans. Aerosp. Electron. Syst. AES-20, 174–182 (1984)

    Google Scholar 

  17. Liu, W., et al.: SSD: single shot MultiBox detector. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9905, pp. 21–37. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46448-0_2

    Chapter  Google Scholar 

  18. Mahalanobis, P.C.: On the generalized distance in statistics. National Institute of Science of India (1936)

    Google Scholar 

  19. Kuhn, H.W.: The Hungarian method for the assignment problem. Nav. Res. Logist. Q. 2(1–2), 83–97 (1955)

    Article  MathSciNet  Google Scholar 

  20. Bernardin, K., Stiefelhagen, R.: Evaluating multiple object tracking performance: the CLEAR MOT metrics. EURASIP J. Image Video Process. 2008, 1–10 (2008)

    Article  Google Scholar 

  21. Motion Based Multi Object Tracking Example, The MathWorks, Inc. (2016–2018)

    Google Scholar 

  22. Leal-Taixé, L., Milan, A., Reid, I., Roth, S., Schindler, K.: MOTChallenge 2015: Towards a Benchmark for Multi-Target Tracking, arXiv preprint (2015)

    Google Scholar 

  23. Jawad, M., Mihaylova, L., Canagarajah, N., Bull, D.: Multiple Object Tracking Using Particle Filters. IEEE paper # 1280 (2016)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sneha Hegde, K .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hegde, K, S., Kannan, S. (2022). Real Time Tracking of Traffic Signs for Autonomous Driving Using Monocular Camera Images. In: Abraham, A., Gandhi, N., Hanne, T., Hong, TP., Nogueira Rios, T., Ding, W. (eds) Intelligent Systems Design and Applications. ISDA 2021. Lecture Notes in Networks and Systems, vol 418. Springer, Cham. https://doi.org/10.1007/978-3-030-96308-8_66

Download citation

Publish with us

Policies and ethics