Skip to main content

EMG-CapsNet: Elu Multiplication Gate Capsule Network for Complex Images Classification

  • Conference paper
  • First Online:
Proceedings of the 13th International Conference on Soft Computing and Pattern Recognition (SoCPaR 2021) (SoCPaR 2021)

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 417))

Included in the following conference series:

  • 603 Accesses

Abstract

Capsule Network presents a new generation of neural networks in the deep learning field. It shows its potential in image classification by grouping features into capsules and using parts to make the whole, which is accomplished through the use of dynamic routing algorithm to route between capsules. Nonetheless, the original Capsule Network is inefficient for complex images due to its limited ability to extract features and its tendency to explain everything in the image. To address the aforementioned concerns, we propose EMG-CapsNet an improved Capsule Network that uses two parallel convolutional layers, one of them with the Exponential Linear Unit activation function. Then we use a gate layer to control the information passed to the next layer. EMG-CapsNet shows better performance approximately 5% compared with the original Capsule Network on the CIFAR-10 dataset. Moreover, the Exponential Linear Unit function allows faster convergence.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sabour, S., Frosst, N., Hinton, G.E.: Dynamic routing between capsules. In: Proceedings of the 31st International Conference on Neural Information Processing Systems, pp. 3859–3869 (2017)

    Google Scholar 

  2. Wan, L., Zeiler, M., Zhang, S., Cun, Y.L., Fergus, R.: Regularization of neural networks using dropconnect. In: International Conference on Machine Learning, pp. 1058–1066. PMLR (2013)

    Google Scholar 

  3. Krizhevsky, A., Hinton, G., et al.: Learning multiple layers of features from tiny images (2009)

    Google Scholar 

  4. Kim, J., Jang, S., Park, E., Choi, S.: Text classification using capsules. Neurocomputing 376, 214–221 (2020)

    Article  Google Scholar 

  5. Hinton, G.E., Krizhevsky, A., Wang, S.D.: Transforming auto-encoders. In: Honkela, T., Duch, W., Girolami, M., Kaski, S. (eds.) ICANN 2011. LNCS, vol. 6791, pp. 44–51. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-21735-7_6

    Chapter  Google Scholar 

  6. Yang, S., et al.: RS-CapsNet: an advanced capsule network. IEEE Access 8, 85007–85018 (2020)

    Article  Google Scholar 

  7. Shahroudnejad, A., Afshar, P., Plataniotis, K.N., Mohammadi, A.: Improved explainability of capsule networks: relevance path by agreement. In: 2018 IEEE Global Conference on Signal and Information Processing (GlobalSIP), pp. 549–553. IEEE (2018)

    Google Scholar 

  8. Hinton, G.E., Sabour, S., Frosst, N.: Matrix capsules with EM routing. In: International Conference on Learning Representations (2018)

    Google Scholar 

  9. Kosiorek, A., Sabour, S., Teh, Y.W., Hinton, G.E.: Stacked capsule autoencoders. In: Advances in Neural Information Processing Systems, vol. 32, pp. 15512–15522 (2019)

    Google Scholar 

  10. Rajasegaran, J., Jayasundara, V., Jayasekara, S., Jayasekara, H., Seneviratne, S., Rodrigo, R.: DeepCaps: going deeper with capsule networks. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10725–10733 (2019)

    Google Scholar 

  11. Chen, J., Liu, Z.: Mask dynamic routing to combined model of deep capsule network and U-Net. IEEE Trans. Neural Netw. Learn. Syst. 31(7), 2653–2664 (2020)

    Google Scholar 

  12. Liu, J., et al.: FSC-CapsNet: fractionally-strided convolutional capsule network for complex data. In: 2019 International Joint Conference on Neural Networks (IJCNN), pp. 1–7. IEEE (2019)

    Google Scholar 

  13. Ding, X., Wang, N., Gao, X., Li, J., Wang, X.: Group reconstruction and max-pooling residual capsule network. In: IJCAI, pp. 2237–2243 (2019)

    Google Scholar 

  14. Nguyen, H.P., Ribeiro, B.: Advanced capsule networks via context awareness. In: Tetko, I.V., Kurková, V., Karpov, P., Theis, F. (eds.) ICANN 2019. LNCS, vol. 11727, pp. 166–177. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-30487-4_14

    Chapter  Google Scholar 

  15. Yi, S., Ma, H., Li, X.: Modified capsule network for object classification. In: Zhao, Y., Barnes, N., Chen, B., Westermann, R., Kong, X., Lin, C. (eds.) ICIG 2019. LNCS, vol. 11901, pp. 256–266. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-34120-6_21

    Chapter  Google Scholar 

  16. Ahmed, K., Torresani, L.: Star-caps: capsule networks with straight-through attentive routing. In: Advance Neural Information Processing System, vol. 32, pp. 9101–9110 (2019)

    Google Scholar 

  17. Gagana, B., Ujjwal Athri, H.A., Natarajan, S.: Activation function optimizations for capsule networks. In: 2018 International Conference on Advances in Computing, Communications and Informatics (ICACCI), pp. 1172–1178. IEEE (2018)

    Google Scholar 

  18. Canqun Xiang, L., Zhang, Y.T., Zou, W., Chen, X.: MS-CapsNet: a novel multi-scale capsule network. IEEE Signal Process. Lett. 25(12), 1850–1854 (2018)

    Article  Google Scholar 

  19. El Alaoui-Elfels, O., Gadi, T.: From auto-encoders to capsule networks: a survey. In: E3S Web of Conferences, vol. 229, p. 01003. EDP Sciences (2021)

    Google Scholar 

  20. Clevert, D.-A., Unterthiner, T., Hochreiter, S.: Fast and accurate deep network learning by exponential linear units (ELUS). arXiv preprint arXiv:1511.07289 (2015)

  21. Zhao, Z., Kleinhans, A., Sandhu, G., Patel, I., Unnikrishnan, K.P.: Fast inference in capsule networks using accumulated routing coefficients. DeepAI, 15 April 2019

    Google Scholar 

  22. Zhao, Z., Kleinhans, A., Sandhu, G., Patel, I., Unnikrishnan, K.P.: Capsule networks with max-min normalization. DeepAI, 22 March 2019

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Omaima El Alaoui-Elfels or Taoufiq Gadi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

El Alaoui-Elfels, O., Gadi, T. (2022). EMG-CapsNet: Elu Multiplication Gate Capsule Network for Complex Images Classification. In: Abraham, A., et al. Proceedings of the 13th International Conference on Soft Computing and Pattern Recognition (SoCPaR 2021). SoCPaR 2021. Lecture Notes in Networks and Systems, vol 417. Springer, Cham. https://doi.org/10.1007/978-3-030-96302-6_9

Download citation

Publish with us

Policies and ethics