Skip to main content

The Xoshiro+ Pseudorandom Number Generator in a Computer Chess Program

  • Conference paper
  • First Online:
Proceedings of the 13th International Conference on Soft Computing and Pattern Recognition (SoCPaR 2021) (SoCPaR 2021)

Abstract

Since computer chess programs can beat human capabilities, new ways are researched to further improve these programs. Pseudorandom number generators (PRNG) play an important role in computer chess. We implement Xoshiro+, a well-known and thoroughly tested PRNG, in Stockfish, the arguably most performant chess engine at the time. Stockfish itself uses Xorshift*. With the help of Cute Chess, a program allowing the automation of chess games, the new Stockfish variant Xoshirofish is tested against Stockfish. The results show a minute increase in the performance of Xoshirofish compared to Stockfish. However, further extensive testing is still required to assert the significance of this increase in performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Berliner, H.J.: A chronology of computer chess and its literature. Artif. Intell. 10(2), 201–214 (1978)

    Article  Google Scholar 

  2. Frey, P.W.: An introduction to computer chess. In: Frey, P.W. (ed.) Chess Skill in Man and Machine, pp. 54–81. Springer, Heidelberg (1977). https://doi.org/10.1007/978-3-662-06239-5_3

    Chapter  MATH  Google Scholar 

  3. Krabbenbos, J., van den Herik, J., Haworth, G.: WCCC 2019: the 25th world computer chess championship. ICGA J. 41(4), 206–221 (2020)

    Article  Google Scholar 

  4. Haworth, G., Hernandez, N.: The 16th top chess engine championship, TCEC16. ICGA J. 41(4), 241–252 (2019)

    Article  Google Scholar 

  5. Shannon, C.E.: XXII. Programming a computer for playing chess. The London Edinburgh Dublin Philos. Mag. J. Sci. 41(314), 256–275 (1950)

    Google Scholar 

  6. Tsuruoka, Y., Yokoyama, D., Chikayama, T.: Game-tree search algorithms based on realization probability. ICGA J. 25(3), 145–152 (2018)

    Article  Google Scholar 

  7. Kendall, G., Whitwell, G.: An evolutionary approach for the tuning of a chess evaluation function using population dynamics. In: Proceedings of the IEEE Conference on Evolutionary Computation, ICEC, 2001, vol. 2, pp. 995–1002 (2001)

    Google Scholar 

  8. CCRL 40/15 - Complete list. http://computerchess.org.uk/ccrl/4040/rating_list_all.html. Accessed 18 June 2021

  9. Grimbergen, R.: Using bitboards for move generation in Shogi. ICGA J. 30(1), 25–34 (2007)

    Article  Google Scholar 

  10. Knuth, D.E., Moore, R.W.: An analysis of alpha-beta pruning. Artif. Intell. 6(4), 293–326 (1975)

    Article  MathSciNet  Google Scholar 

  11. Russell, S., Norvig, P.: Artificial Intelligence: A Modern Approach, 4th edn. Pearson (2020)

    Google Scholar 

  12. Zhang, H., Li, S., Ding, M.: Research on linear evaluation function based on LMS algorithm. In: Proceedings of the 29th Chinese Control and Decision Conference, CCDC 2017, pp. 7632–7634 (2017)

    Google Scholar 

  13. Can the sardine! NNUE clobbers SF. - TalkChess.com. http://www.talkchess.com/forum3/viewtopic.php?f=2&t=74484. Accessed 18 June 2021

  14. Nasu, Y.: Efficiently updatable neural-network-based evaluation functions for computer shogi. In: The 28th World Computer Shogi Championship Appeal Document (2018)

    Google Scholar 

  15. James, F.: A review of pseudorandom number generators. Comput. Phys. Commun. 60(3), 329–344 (1990)

    Article  MathSciNet  Google Scholar 

  16. L’Ecuyer, P.: Pseudorandom number generators. In: Encyclopedia of Quantitative Finance. Wiley (2010)

    Google Scholar 

  17. Jinnai, Y., Fukunaga, A.: Abstract Zobrist hashing: an efficient work distribution method for parallel best-first search. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 30, no. 1 (2016)

    Google Scholar 

  18. Kannan, P.: Magic move-bitboard generation in computer chess. Preprint (2007)

    Google Scholar 

  19. Lemire, D., O’Neill, M.E.: Xorshift1024* xorshift1024+, xorshift128+ and xoroshiro128+ fail statistical tests for linearity. J. Comput. Appl. Math. 350, 139–142 (2019)

    Article  MathSciNet  Google Scholar 

  20. Blackman, D., Vigna, S.: Scrambled linear pseudorandom number generators. arXiv preprint arXiv:1805.01407 (2018)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Hanne .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Schären, T., Hanne, T., Dornberger, R. (2022). The Xoshiro+ Pseudorandom Number Generator in a Computer Chess Program. In: Abraham, A., et al. Proceedings of the 13th International Conference on Soft Computing and Pattern Recognition (SoCPaR 2021). SoCPaR 2021. Lecture Notes in Networks and Systems, vol 417. Springer, Cham. https://doi.org/10.1007/978-3-030-96302-6_3

Download citation

Publish with us

Policies and ethics