Skip to main content

Knee Abnormality Diagnosis Based on Electromyography Signals

  • Conference paper
  • First Online:
Proceedings of the 13th International Conference on Soft Computing and Pattern Recognition (SoCPaR 2021) (SoCPaR 2021)

Abstract

This paper presents a new knee abnormality diagnosis system using surface EMG signals. The time-frequency domain is obtained for EMG raw data using Short Time Fourier Transform (STFT) method, and filtered with the local range texture analysis to produce the final 2D extracted feature. For system evaluation, public SEMG database is chosen, and experiments show that EMG data of Vastus Medialis (VM) muscle with Convolutional Neural Network (CNN) classifier provide the highest accuracy of 91%.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. International Design Foundation. Human-Computer Interaction (HCI). https://www.interaction-design.org/literature/topics/human-computer-interaction. Accessed 30 Sept 2021

  2. Electrogram. https://www.merriam-webster.com/dictionary/electrogram. Accessed 30 Sept 2021

  3. Raez, M.B.I., Hussain, M.S., Mohd-Yasin, F.: Techniques of EMG signal analysis: detection, processing, classification and applications. Biol. Proced. Online 8, 11–35 (2006)

    Article  Google Scholar 

  4. Govindhan, A., Kandasamy, S., Satyanarayan, M., Singh, P., Aadhav, I.: Towards development of a portable apparatus for knee health monitoring. In: 3rd International Conference on Recent Developments in Control, Automation and Power Engineering (RDCAPE), Noida, India. IEEE (2019)

    Google Scholar 

  5. Aiello, E., et al.: Visual EMG biofeedback to improve ankle function in hemiparetic gait. In: IEEE Engineering in Medicine and Biology 27th Annual Conference 2019, Shanghai, China. IEEE (2019)

    Google Scholar 

  6. Singh, E., Iqbal, K., White, G., Holtz, K.: A Review of EMG Techniques for Detection of Gait Disorders. Machine Learning in Medicine and Biology, Intechopen (2019)

    Google Scholar 

  7. Vijayvargiya, A., Kumar, R., Dey, N., Tavares, R.S.: Comparative analysis of machine learning techniques for the classification of knee abnormality. In: 5th International Conference on Computing Communication and Automation (ICCCA), Noida, India. IEEE (2020)

    Google Scholar 

  8. Vijayvargiya, A., Prakash, Ch., Kumar, R., Bansal, S., Tavares, R.S.: Human knee abnormality detection from imbalanced sEMG data. Biomed. Signal Process. Control 66, 1–14 (2021)

    Article  Google Scholar 

  9. Erkaymaz, O., Şenyer, İ., Uzun, R.: Detection of knee abnormality from surface EMG signals by artificial neural networks. In: 25th Signal Processing and Communications Applications Conference (SIU) 2017, Antalya, Turkey, pp. 1–4. IEEE (2017)

    Google Scholar 

  10. Balasubramanyam, V., Kalappan, B.: Evaluation of knee activities using EMG signals for pre-predicting lower limb dystonia diseases. Int. J. Intell. Eng. Syst. 11(6), 156–166 (2018)

    Google Scholar 

  11. Kohlschuetter, J., Peters, J., Rueckert, E.: Learning probabilistic features from EMG data for predicting knee abnormalities. In: Kyriacou, E., Christofides, S., Pattichis, C.S. (eds.) XIV Mediterranean Conference on Medical and Biological Engineering and Computing 2016. IP, vol. 57, pp. 662–666. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-32703-7_128

    Chapter  Google Scholar 

  12. Herrera-González, M., Martínez-Hernández, G., Rodríguez-Sotelo, J., Avilés-Sánchez, O.: Knee functional state classification using surface electromyographic and goniometric signals by means artificial neural networks. Ingeniería y Universidad 19(1), 51–66 (2015)

    Google Scholar 

  13. Precup, R., Teban, T., Albu, A., Borlea, A., Zamfirache, I.A., Petriu, E.: Evolving fuzzy models for prosthetic hand myoelectric-based control. IEEE Trans. Instrum. Measur. 69(7), 4625–4636 (2020)

    Google Scholar 

  14. Zall, R., Kangavari, M.R.: On the construction of multi-relational classifier based on canonical correlation analysis. Int. J. Artif. Intell. 17(2), 23–43 (2020)

    Google Scholar 

  15. Pozna, C., Precup, R., Pârvan, V.: Applications of Signatures to Expert Systems Modelling, APH (2014)

    Google Scholar 

  16. Sanchez, O., Sotelo, J., Gonzales, M., Hernandez, G.: EMG Dataset in Lower Limb Data Set, UCI Machine Learning Repository (2014)

    Google Scholar 

  17. Konrad, P.: The ABC of EMG. A Practical Introduction to Kinesiological Electromyography, 1st edn. (2005)

    Google Scholar 

  18. Sejdić, E., Djurović, I., Jiang, J.: Time-frequency feature representation using energy concentration: an overview of recent advances. Digit. Signal Process. 19(1), 153–183 (2009)

    Article  Google Scholar 

  19. Issa, S., Peng, Q., You, X.: Emotion classification using EEG brain signals and the broad learning system. IEEE Trans. Syst. Man Cybern. Syst. 51, 7382–7391 (2020)

    Article  Google Scholar 

  20. Issa, S., Peng, Q., You, X.: Emotion assessment using EEG brain signals and stacked sparse autoencoder. J. Inf. Assurance Secur. 14(1), 20–29 (2019)

    Google Scholar 

  21. Texture Analysis. https://www.mathworks.com/help/images/texture-analysis-1.html. Accessed 30 Sept 2021

  22. Image Classifier using CNN. https://www.geeksforgeeks.org/image-classifier-using-cnn. Accessed 08 Nov 2021

  23. Image Classifier using CNN. https://heartbeat.comet.ml/a-beginners-guide-to-convolutional-neural-networks-cnn-cf26c5ee17ed. Accessed 30 Sept 2021

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sali Issa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Issa, S., Khaled, A.R. (2022). Knee Abnormality Diagnosis Based on Electromyography Signals. In: Abraham, A., et al. Proceedings of the 13th International Conference on Soft Computing and Pattern Recognition (SoCPaR 2021). SoCPaR 2021. Lecture Notes in Networks and Systems, vol 417. Springer, Cham. https://doi.org/10.1007/978-3-030-96302-6_13

Download citation

Publish with us

Policies and ethics