Skip to main content

Improving 3D Plankton Image Classification with C3D2 Architecture and Context Metadata

  • Conference paper
  • First Online:
Innovations in Bio-Inspired Computing and Applications (IBICA 2021)

Abstract

Studying the variations of the submarine environment at the plankton level can significantly contribute to the preservation of the environment. In situ plankton imaging systems have known an important evolution giving large scale plankton data for organism classification and analysis. Automated classifiers based on Convolutional Neural network are identified as highly efficient methods for image classification but require careful configuration especially for 3D images. In this paper, we propose a CNN architecture for 3D image classification to classify 155 classes of plankton from TARA Oceans dataset in four levels of hierarchical classes. We experiment and compare our proposal denoted C3D2 with competitive CNNs already performed on the case of plankton recognition such as DenseNet and SparseConvNet. Furthermore, we design several methods to incorporate context metadata on CNN architectures in order to boost the performance of the classification model. Finally, we show that C3D2 is more precise than other models. We also show the impact of incorporating context metadata into CNN architecture on different levels of classes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://oceanomics.eu/fr.

  2. 2.

    https://oceans.taraexpeditions.org/en/.

  3. 3.

    https://github.com/zhenglab/PlanktonMKL/tree/master/Dataset.

References

  1. Colin, S., et al.: Quantitative 3D-imaging for cell biology and ecology of environmental microbial eukaryotes. Elife 6, e26066 (2017)

    Article  Google Scholar 

  2. Cowen, R.K., Sponaugle, S., Robinson, K.L., Luo, J.: PlanktonSet 1.0: Plankton imagery data collected from F.G. Walton smith in straits of Florida from 3 June 2014 to 6 June 2014 and used in the 2015 national data science bowl (NODC Accession 0127422) (2015)

    Google Scholar 

  3. Cowen, R.K., Guigand, C.M.: In situ ichthyoplankton imaging system (ISIIS): system design and preliminary results. Limnol. Oceanogr. 6, 126–132 (2008)

    Article  Google Scholar 

  4. Ellen, J.S., Graff, C.A., Ohman, M.D.: Improving plankton image classification using context metadata. Limnol. Oceanogr. 17, 439–461 (2019)

    Article  Google Scholar 

  5. Gomez-Donoso, F., Garcia-Garcia, A., Garcia-Rodriguez, J., Orts-Escolano, S., Cazorla, M.: LonchaNet: a sliced-based CNN architecture for real-time 3D object recognition. In: 2017 International Joint Conference on Neural Networks (IJCNN). IEEE (2017)

    Google Scholar 

  6. Gorsky, G., et al.: Digital zooplankton image analysis using the ZooScan integrated system. J. Plankton Res. 32(3), 285–303 (2010)

    Article  Google Scholar 

  7. Guo, Y., Liu, Y., Oerlemans, A., Lao, S., Wu, S., Lew, M.S.: Deep learning for visual understanding: a review. Neurocomputing 187, 27–48 (2016)

    Article  Google Scholar 

  8. Hara, K., Kataoka, H., Satoh, Y.: Can spatiotemporal 3D CNNS retrace the history of 2D CNNS and ImageNet? In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2018)

    Google Scholar 

  9. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2016)

    Google Scholar 

  10. Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, K.Q.: Densely connected convolutional networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2017)

    Google Scholar 

  11. Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, PMLR (2015)

    Google Scholar 

  12. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. Adv. Neural Inf. Process. Syst. 25, 1097–1105 (2012)

    Google Scholar 

  13. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. In: Proceedings of the IEEE (1998)

    Google Scholar 

  14. Lumini, A., Nanni, L.: Ocean ecosystems Plankton classification. In: Hassaballah, M., Hosny, K. (eds.) Recent Advances in Computer Vision. Studies in Computational Intelligence, vol. 804, pp. 261-280. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-03000-1_11

  15. Lumini, A., Nanni, L., Maguolo, G.: Deep learning for plankton and coral classification. Appl. Comput. Inf. (2020)

    Google Scholar 

  16. Luo, J.Y., et al.: Environmental drivers of the fine-scale distribution of a gelatinous zooplankton community across a mesoscale front. Mar. Ecol. Prog. Ser. 510, 129–149 (2014)

    Article  Google Scholar 

  17. Luo, J.Y., et al.: Automated plankton image analysis using convolutional neural networks. Limnol. Oceanogr. 16(12), 814–827 (2018)

    Article  Google Scholar 

  18. McClatchie, S., et al.: Resolution of fine biological structure including small narcomedusae across a front in the southern California bight. J. Geophys. Res. Oceans (2012)

    Google Scholar 

  19. Nanni, L., Costa, Y.M., Aguiar, R.L., Mangolin, R.B., Brahnam, S., Silla, C.N.: Ensemble of convolutional neural networks to improve animal audio classification. EURASIP J. Audio Speech Music Process. 2020, 8 (2020). https://doi.org/10.1186/s13636-020-00175-3

    Article  Google Scholar 

  20. Nunnari, F., Bhuvaneshwara, C., Ezema, A.O., Sonntag, D.: A study on the fusion of pixels and patient metadata in CNN-based classification of skin lesion images. In: Holzinger, A., Kieseberg, P., Tjoa, A., Weippl, E. (eds.) CD-MAKE 2020. LNCS, vol. 12279, pp. 191–208. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-57321-8_11

  21. Perez, L., Wang, J.: The effectiveness of data augmentation in image classification using deep learning. arXiv preprint arXiv:1712.04621 (2017)

  22. Robinson, K.L., Luo, J.Y., Sponaugle, S., Guigand, C., Cowen, R.K.: A tale of two crowds: public engagement in plankton classification. Front. Mar. Sci 4, 82 (2017)

    Google Scholar 

  23. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)

  24. Sosik, H.M., Olson, R.J.: Automated taxonomic classification of phytoplankton sampled with imaging-in-flow cytometry. Limnol. Oceanogr. Methods 6, 204–216 (2007)

    Article  Google Scholar 

  25. Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.: Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15, 1929–1958 (2014)

    MathSciNet  MATH  Google Scholar 

  26. Szegedy, C., et al.: Going deeper with convolutions. In: IEEE Conference on Computer Vision and Pattern Recognition (2015)

    Google Scholar 

  27. Tran, D., Bourdev, L., Fergus, R., Torresani, L., Paluri, M.: Learning spatiotemporal features with 3D convolutional networks. In: Proceedings of the IEEE International Conference on Computer Vision (2015)

    Google Scholar 

  28. Zeiler, M.D., Fergus, R.: Visualizing and understanding convolutional networks. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8689, pp. 818–833. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10590-1_53

  29. Zheng, H., Wang, R., Yu, Z., Wang, N., Gu, Z., Zheng, B.: Automatic plankton image classification combining multiple view features via multiple kernel learning. BMC Bioinf. 18, 570 (2017). https://doi.org/10.1186/s12859-017-1954-8

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nassima Benammar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Benammar, N., Kahil, H., Titah, A., Calcagno, F.M., Abidi, A., Mabrouk, M.B. (2022). Improving 3D Plankton Image Classification with C3D2 Architecture and Context Metadata. In: Abraham, A., et al. Innovations in Bio-Inspired Computing and Applications. IBICA 2021. Lecture Notes in Networks and Systems, vol 419. Springer, Cham. https://doi.org/10.1007/978-3-030-96299-9_17

Download citation

Publish with us

Policies and ethics