Skip to main content

Abstract

The thyroid gland develops from the foramen cecum of the tongue, to which it is connected by the thyroglossal duct. It descends during fetal life to reach the anterior neck by about the seventh week. Absent or aberrant descent results in ectopic locations, including the sublingual region and superior mediastinum. The thyroid follicle consists of a colloid center, which acts as a storage site for thyroid hormone, surrounded by epithelial cells. The function of the thyroid gland is to utilize iodine, found in many foods, to form thyroid hormones: thyroxine (T4) and triiodothyronine (T3). Thyroid cells are the only cells in the body which can absorb iodine. The last organ to be recognized in man, the parathyroid glands, was discovered in 1880 by a Swedish medical student. The parathyroid glands are affected by a number of primary pathological processes—neoplasia (adenoma and carcinoma) and hyperplasia (wasserhelle cell and chief cell types)—that resulted in overactivity and required surgical removal of one or more of them. Nuclear medicine has an important role in preoperative localization of abnormal parathyroid glands which help decrease surgical manipulation and morbidity.

The adult adrenal glands weigh 8–10 g and lie above and slightly medial to the upper pole of both kidneys. The outer cortex comprises 90% of the adrenal weight, and the inner medulla about 10%. In neuroendocrine tumors, nuclear medicine is particularly important in the diagnosis, follow-up, and treatment. This chapter presents the various relevant disease processes, their diagnosis by scintigrapy in correlation with the pathophysiologic changes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Nurunnabi ASM, Alim A, Sabiha M, Manowara B, Monira K, Shamim A (2010) Weight of the human thyroid gland: a postmortem study. Bangladesh J Med Sci 9(1):44–48

    Google Scholar 

  2. Ellis H (2007) Anatomy of the thyroid and parathyroid glands. Surgery 25(11): 467–468

    Google Scholar 

  3. Sarkar SD (1996) Thyroid pathophysiology. In: Sandler MP, Coleman RE, FJ TW (eds) Diagnostic nuclear medicine. Williams and Wilkins, Baltimore, pp 899–909

    Google Scholar 

  4. Cooper DS (2005) Antithyroid drugs. N Engl J Med 352:905–917

    Article  CAS  PubMed  Google Scholar 

  5. Malozowski S, Chiesa A (2010) Propylthiouracil-induced hepatotoxicity and death. Hopefully, nevermore. J Clin Endocrinol Metab 95:3161–3163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Silberstein EB, Alavi A, Balon HR et al (2012) The SNM practice guideline for therapy of thyroid disease with 131I. J Nucl Med 53

    Google Scholar 

  7. Sarkar SD, Savitch I (2004) Management of thyroid cancer. Appl Radiol 33:34–45

    Article  Google Scholar 

  8. Tala H, Robbins R, Fagin JA et al (2011) Five-year survival is similar in thyroid cancer patients with distant metastases prepared for radioactive iodine therapy with either thyroid hormone withdrawal or recombinant human TSH. J Clin Endocrinol Metab 96:2105–2111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Sarkar SD, Afriyie MO, Palestro CJ (2001) Recombinant human thyroid-stimulating-hormone-aided scintigraphy: comparison of imaging at multiple times after I-131 administration. Clin Nucl Med 26:392–395

    Article  CAS  PubMed  Google Scholar 

  10. Moog F, Linke R, Manthey N et al (2000) Influence of thyroid stimulating hormone levels on uptake of FDG in recurrent and metastatic differentiated thyroid carcinoma. J Nucl Med 41:1989–1995

    CAS  PubMed  Google Scholar 

  11. Akamizu T, Satoh T, Isozaki O et al (2012) Diagnostic criteria, clinical features, and incidence of thyroid storm based on nationwide surveys. Thyroid 22:661–679

    Google Scholar 

  12. Chin BB, Patel P, Cohade C et al (2004) Recombinant human thyrotropin stimulation of fluoro-D-glucose positron emission tomography in well-differentiated thyroid carcinoma. J Clin Endocrinol Metab 89:91–95

    Google Scholar 

  13. Bidart JM, Mian C, Lazar V, Russo D, Filetti S, Caillou B et al (2000) Expression of pendrin and the Pendred syndrome (PDS) gene in human thyroid tissues. J Clin Endocrinol Metab 2000(85):2028–2033

    Google Scholar 

  14. Mitchell AM, Manley SW, Morris JC, Powell KA, Bergert ER, Mortimer RH (2001) Sodium iodide symporter (NIS) gene expression in human placenta. Placenta 22:256–258

    Article  CAS  PubMed  Google Scholar 

  15. Pearce EN, Lazarus JH, Moreno-Reyes R, Zimmermann MB (2016) Consequences of iodine deficiency and excess in pregnant women: an overview of current knowns and unknowns. Am J Clin Nutr 104:918S–923S

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Koukkou EG, Roupas ND, Markou KB (2017) Effect of excess iodine intake on thyroid on human health. Minerva Med 108:136–146

    Article  PubMed  Google Scholar 

  17. Bogazzi F, Bartalena L, Gasperi M et al (2001) The various effects of amiodarone on thyroid function. Thyroid 11:511–519

    Article  CAS  PubMed  Google Scholar 

  18. Daniels GH (2001) Amiodarone-induced thyrotoxicosis. J Clin Endocrinol Metab 86:3–8

    Article  CAS  PubMed  Google Scholar 

  19. Laurie AJ, Lyon SG, Lasser EC (1992) Contrast material iodides: potential effects on radioactive iodine thyroid uptake. J Nucl Med 33:237–238

    CAS  PubMed  Google Scholar 

  20. Sarkar SD, Kalapparambath T, Palestro CJ (2002) Comparison of I-123 and I-131 for whole body imaging in thyroid cancer. J Nucl Med 43:632–634

    PubMed  Google Scholar 

  21. Ward LS, Santarosa PL, Granja F et al (2003) Low expression of sodium iodide symporter identifies aggressive thyroid tumors. Cancer Lett 200:85–91

    Article  CAS  PubMed  Google Scholar 

  22. Bertagna F, Treglia G, Piccardo G et al (2012) Diagnostic and clinical significance of F-18-FDG-PET/CT thyroid incidentalomas. J Clin Endocrinol Metab 97:3866–3875

    Article  CAS  PubMed  Google Scholar 

  23. Castellana M, Trimboli P, Piccardo A, Giovanella L, Treglia G (2019) Performance of 18F-FDG PET/CT in selecting thyroid nodules with indeterminate fine-needle aspiration cytology for surgery. A systematic review and a meta-analysis. J Clin Med 8:1333

    Article  PubMed Central  Google Scholar 

  24. Kim YH, Chang Y, Kim Y, Kim SJ, Rhee EJ et al (2019) Diffusely increased 18F-FDG uptake in the thyroid gland and risk of thyroid dysfunction: a cohort study. J Clin Med 8:443

    Article  CAS  PubMed Central  Google Scholar 

  25. Padma V, Ramakrishnan C (2019) Malignancy in solitary thyroid nodules: a study on incidence & evaluation of risk. Indian J Public Health Res Dev 10:4253–4255

    Article  Google Scholar 

  26. Kishan AM, Prasad K (2018) Prevalence of solitary thyroid nodule and evaluation of the risk factors associated with occurrence of malignancy in a solitary nodule of thyroid. Int Surg J 5(6):2279–2285

    Article  Google Scholar 

  27. Guth S, Theune U, Aberle J, Galach A, Bamberger CM (2009) Very high prevalence of thyroid nodules detected by high frequency (13 MHz) ultrasound examination. Eur J Clin Investig 39:699–706

    Article  CAS  Google Scholar 

  28. Jiang H, Tian Y, Yan W, Kong Y, Wang H, Wang A et al (2016) The prevalence of thyroid nodules and an analysis of related lifestyle factors in Beijing communities. Int J Environ Res Public Health 13:1–11

    Google Scholar 

  29. Holm LE, Blomgren H, Lowhagen T (1985) Cancer risks in patients with chronic autoimmune thyroiditis. N Engl J Med 312:601–604

    Article  CAS  PubMed  Google Scholar 

  30. Belfiore A, La Rosa GL, La Porta GA, Giuffrida D, Milazzo G, Lupo L et al (1992) Cancer risk in patients with cold thyroid nodules: relevance of iodine intake, sex, age, and multinodularity. Am J Med 93:363–369

    Article  CAS  PubMed  Google Scholar 

  31. Fabrizio Monaco F (2003) Classification of thyroid diseases: suggestions for a revision. J Clin Endocrinol Metabol 88:1428–1432

    Article  CAS  Google Scholar 

  32. Fernandez-Soto L, Gonzalez A, Escobar-Jimenez F et al (1998) Increased risk of autoimmune thyroid disease in hepatitis C vs hepatitis B before, during, and after discontinuing interferon therapy. Arch Intern Med 158:1445–1448

    Article  CAS  PubMed  Google Scholar 

  33. Hooft L, Hoekstra OS, Deville W et al (2001) Diagnostic accuracy of 18F-fluorodeoxyglucose positron emission tomography in the follow-up of papillary or follicular thyroid cancer. J Clin Endocrinol Metab 86:3779–3786

    Article  CAS  PubMed  Google Scholar 

  34. Sarkar SD, Becker DV (1995) Thyroid uptake and imaging. In: Becker KL (ed) Principles and practice of endocrinology and metabolism. Lippincott, Philadelphia, pp 307–313

    Google Scholar 

  35. Dang AH, Hershman JM (2002) Lithium-associated thyroiditis. Endocr Pract 8:232–236

    Article  PubMed  Google Scholar 

  36. Amino N, Tada H, Hidaka Y et al (1999) Screening for postpartum thyroiditis. J Clin Endocrinol Metab 84:1813

    Article  CAS  PubMed  Google Scholar 

  37. Stagnaro-Green A (2002) Postpartum thyroiditis. J Clin Endocrinol Metab 87:4042–4047

    Article  CAS  PubMed  Google Scholar 

  38. Premawardhana LDKE, Parkes AB, John R et al (2004) Thyroid peroxidase antibodies in early pregnancy: utility for prediction of postpartum thyroid dysfunction and implications for screening. Thyroid 14:610–615

    Article  CAS  PubMed  Google Scholar 

  39. Mandac JC, Chaudhry S, Sherman KE, Tomer Y (2006) The clinical and physiological spectrum of interferon-alpha induced thyroiditis: toward a new classification. Hepatology 43(4):661–672

    Article  CAS  PubMed  Google Scholar 

  40. Oppenheim Y, Ban Y, Tomer Y (2004) Interferon induced autoimmune thyroid disease (AITD): a model for human autoimmunity. Autoimmun Rev 3:388–393

    Article  CAS  PubMed  Google Scholar 

  41. Bliddal S, Nielsen CH, Feldt-Rasmussen U (2017) Recent advances in understanding autoimmune thyroid disease: the tallest tree in the forest of polyautoimmunity. F1000 Res 6:1776. https://doi.org/10.12688/f1000research.11535.1

    Article  CAS  Google Scholar 

  42. Vestergaard P, Rejnmark L, Weeke J et al (2002) Smoking as a risk factor for Graves’ disease, toxic nodular goiter, and autoimmune hypothyroidism. Thyroid 12:69–75

    Article  PubMed  Google Scholar 

  43. Fountoulakis S, Tsatsoulis A (2004) On the pathogenesis of autoimmune thyroid disease: a unifying hypothesis. Clin Endocrinol 60:397–409

    Article  Google Scholar 

  44. Li Y, Teng D, Shan Z et al (2008) Antithyroperoxidase and antithyroglobulin antibodies in a five-year follow up survey of populations with different iodine intakes. J Clin Endocrinol Metab 93:1751–1757

    Article  CAS  PubMed  Google Scholar 

  45. Nygaard B, Knudsen JH, Hegedus L et al (1997) Thyrotropinreceptor antibodies and Graves’ disease, a side-effect of I-131 treatment in patients with nontoxic goiter. J Clin Endocrinol Metab 82:2926–2930

    CAS  PubMed  Google Scholar 

  46. Surks MI, Ortiz E, Daniels GH et al (2004) Subclinical thyroid disease: scientific review and guidelines for diagnosis and management. JAMA 291:228–238

    Article  CAS  PubMed  Google Scholar 

  47. Weetman AP (2000) Graves disease. N Engl J Med 343:1236–1248

    Article  CAS  PubMed  Google Scholar 

  48. Ahmed A, Craig W, Krukowski ZH (2012) Quality of life after surgery for Graves’ disease: comparison of those having surgery intended to preserve thyroid function with those having ablative surgery. Thyroid 22:494–500

    Article  Google Scholar 

  49. Burch HB, Burman KD, Cooper DS (2012) A 2011 survey of clinical practice patterns in the management of Graves’ disease. J Clin Endocrinol Metab 97:4549–4558

    Article  CAS  PubMed  Google Scholar 

  50. La Vecchia C, Malvezzi M, Bosetti C, Garavello W, Bertuccio P, Levi F, Negri E (2015) Thyroid cancer mortality and incidence: a global overview. Int J Cancer 136:2187–2195

    Article  PubMed  CAS  Google Scholar 

  51. Tumino D, Grani G, Di Stefano M, Di Mauro M, Scutari M et al (2020) Nodular thyroid disease in the era of precision medicine. Front Endocrinol 10:907

    Article  Google Scholar 

  52. Elgazzar AH, Alenezi S, Alshammari JM, Ghanem M, Asa'Ad S (2015) Value of oblique view in nodular thyroid disease; revisiting fundamentals. World J Nucl Med 14:125

    Article  PubMed  PubMed Central  Google Scholar 

  53. Liu Y (2009) Clinical significance of thyroid uptake on F18-fluorodeoxyglucose positron emission tomography. Ann Nucl Med 23:17–23

    Article  PubMed  CAS  Google Scholar 

  54. Soto GD, Halperin I, Squarcia M, Lomeña F, Domingo MP (2010) Update in thyroid imaging. The expanding world of thyroid imaging and its translation to clinical practice. Hormones 9:287–298

    Article  PubMed  Google Scholar 

  55. Sarkar SD (2006) Benign thyroid disease: what is the role of nuclear medicine? Semin Nucl Med 36:185–193

    Article  PubMed  Google Scholar 

  56. Bath SC, Steer CD, Golding J, Emmett P, Rayman MP (2013) Effect of inadequate iodine status in UK pregnant women on cognitive outcomes in their children: results from the Avon Longitudinal Study of Parents and Children (ALSPAC). Lancet 382:331–337

    Article  CAS  PubMed  Google Scholar 

  57. Hynes KL, Otahal P, Burgess JR, Oddy WH, Hay I (2017) Reduced educational outcomes persist into adolescence following mild iodine deficiency in utero, despite adequacy in childhood: 15-year follow-up of the Gestational Iodine Cohort investigating auditory processing speed and working memory. Nutrients 9:pii:E135477

    Article  Google Scholar 

  58. Abel MH, Caspersen IH, Meltzer HM, Haugen M, Brandlistuen RE, Aase H, Alexander J, Torheim LE, Brantsaeter AL (2017) Suboptimal maternal iodine intake is associated with impaired child neurodevelopment at 3 years of age in the Norwegian mother and child cohort study. J Nutr 147:1314–1324

    Article  CAS  PubMed  Google Scholar 

  59. Levie D, Tim I, Korevaar M, Bath SC, Dalmau-Bueno A et al (2018) Thyroid function in early pregnancy, child IQ, and autistic traits: a meta-analysis of individual participant data. J Clin Endocrinol Metabol 103:2967–2297

    Article  Google Scholar 

  60. Taterra D, Wong LM, Vikse J, Sanna B, Pękala P, Walocha J, Cirocchi R, Tomaszewski K, Henry BM (2019) The prevalence and anatomy of parathyroid glands: a meta-analysis with implications for parathyroid surgery. Langenbeck's Arch Surg 404(1):63–70. 55

    Article  Google Scholar 

  61. Alenezi SA, Asa'ad SM, Elgazzar AH (2015) Scintigraphic parathyroid imaging: concepts and new developments. Res Rep Nucl Med 5:9–18

    Google Scholar 

  62. Quiros RM, Warren W, Prinz RA (2004) Excision of a mediastinal parathyroid gland with use of video-assisted thoracoscopy, intraoperative 99mTc-sestamibiscanning, and intraoperative monitoring of intact parathyroid hormone. Endocr Pract 10:45–48

    Article  PubMed  Google Scholar 

  63. Taterra D, Wong LM, Vikse J, Sanna B, Pękala P, Walocha J et al (2019) The prevalence and anatomy of parathyroid glands: a meta-analysis with implications for parathyroid surgery. Langenbeck's Arch Surg 404:63–70

    Article  Google Scholar 

  64. Akerstrom G, Grimelius L, Johansson H, Lundquist H, Pertoft H, Bergstrom R (1981) The parenchymal cell mass in normal human parathyroid glands. Acta Pathol Microbiol Immunol Scand 89(A):367

    CAS  Google Scholar 

  65. Akerstrom G, Rudberg C, Grimelius L et al (1986) Histologic parathyroid abnormalities in an autopsy series. Hum Pathol 17:520–527

    Article  CAS  PubMed  Google Scholar 

  66. Heath H III (1991) Clinical spectrum of primary hyperparathyroidism: evolution with changes in medical practice and technology. J Bone Mineral Res 6:S63–S70

    Article  Google Scholar 

  67. Bilezikian JP, Bandeira L, Khan A, Cusano NE (2018) Hyperparathyroidism. Lancet 391(10116):168–178

    Article  CAS  PubMed  Google Scholar 

  68. Silva BC, Cusano NE, Bilezikian JP (2018) Primary hyperparathyroidism. Best Pract Res Clin Endocrinol Metab 32(5):593–607

    Article  CAS  PubMed  Google Scholar 

  69. Yeh MW, Ituarte PHG, Zhou HC et al (2013) Incidence and prevalence of primary hyperparathyroidism in a racially mixed population. J Clin Endocrinol Metab 98(3):1122–1129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Ljunghall S, Hellman P, Rastad J, Akerström G (1991) Primary hyperparathyroidism: epidemiology, diagnosis and clinical picture. World J Surg 15(6):681–687

    Article  CAS  PubMed  Google Scholar 

  71. Herfarth KK, Wells SA (1997) Parathyroid glands and the multiple endocrine neoplasia syndromes and familial hypocalciuric hypercalcemia. Semin Surg Oncol 13:114–124

    Article  CAS  PubMed  Google Scholar 

  72. Duh QY, Hybarger CP, Geist R, Gamsu G, Goodman PC, Gooding GA, Clark OH (1987) Carcinoids associated with multiple endocrine neoplasia syndromes. Am J Surg 154:142–148

    Article  CAS  PubMed  Google Scholar 

  73. Beus KS, Stack BC (2004) Synchronous thyroid pathology in patients presenting with primary hyperparathyroidism. Am J Otolaryngol 25:308–312

    Article  PubMed  Google Scholar 

  74. Sidhu S, Campbell P (2000) Thyroid pathology associated with primary hyperparathyroidism. Aust NZJ Surg 70:285–287

    Article  CAS  Google Scholar 

  75. Hedman IL, Tisell LE (1984) Associated hyperparathyroidism and non-medullary thyroid carcinoma: the etiological role of radiation. Surgery 95:392–397

    CAS  PubMed  Google Scholar 

  76. Lau WL, Obi Y, Kalantar-Zadeh K (2018) Parathyroidectomy in the management of secondary hyperparathyroidism. Clin J Am Soc Nephrol 13(6):952–961

    PubMed  PubMed Central  Google Scholar 

  77. Thompson NW, Eckhauser FE, Harness JK (1982) The anatomy of primary hyperparathyroidism. Surgery 92:814–821

    CAS  PubMed  Google Scholar 

  78. Simeone DM, Sandelin K, Thompson NW (1995) Undescended superior parathyroid gland: a potential cause of failed cervical exploration for hyperparathyroidism. Surgery 118:949–956

    Article  CAS  PubMed  Google Scholar 

  79. Tezelman S, Shen W, Shaver JK et al (1993) Double parathyroid adenomas: clinical and biochemical characteristics before and after parathyroidectomy. Ann Surg 218:300–309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Bartsch D, Nies C, Hasse C et al (1995) Clinical and surgical aspects of double adenoma in patients with primary hyperparathyroidism. Br J Surg 82:926–929

    Article  CAS  PubMed  Google Scholar 

  81. Nguyen BD (1999) Parathyroid imaging with Tc-99msestamibiplanar and SPECT scintigraphy. Radiographics 19:601–614

    Article  CAS  PubMed  Google Scholar 

  82. Clark OH, Duh QY (1989) Primary hyperparathyroidism: a surgical perspective. Endocrinol Metab Clin N Am 18:701–714

    Article  CAS  Google Scholar 

  83. McHenry CR, Lee K, Saadey J et al (1996) Parathyroid localization with technetium-99m-sestamibi: a prospective evaluation. J Am Coll Surg 183:25–30

    CAS  PubMed  Google Scholar 

  84. Bergenfelz A, Tennvall J, Valdermarsson S et al (1997) Sestamibiversusthallium subtraction scintigraphy in parathyroid localization: a prospective comparative study in patients with predominantly mild primary hyperparathyroidism. Surgery 121:601–605

    Article  CAS  PubMed  Google Scholar 

  85. Rogers LA, Fetter BF, Peete WPJ (1969) Parathyroid cyst and cystic degeneration of parathyroid adenoma. Arch Pathol 88:476–479

    CAS  PubMed  Google Scholar 

  86. Fallon MD, Haines JW, Teitelbaum SL (1982) Cystic parathyroid gland hyperplasia-hyperparathyroidism presenting as a neck mass. Am J Clin Pathol 77:104–107

    Article  CAS  PubMed  Google Scholar 

  87. Turner WJD, Baergen RN, Pellitteri PK, Orloff LA (1996) Parathyroid lipoadenoma: case report and review of the literature. Otolaryngol Head Neck Surg 114:313–316

    Article  CAS  PubMed  Google Scholar 

  88. Cummings CW (2005) Otolaryngology: head and neck surgery, 4th edn. Mosby, Philadelphia

    Google Scholar 

  89. Cheng L, Bostwick DG (2011) Endocrine pathology. In: Essentials of anatomic pathology, 3rd edn. Springer, Berlin, pp 927–928

    Chapter  Google Scholar 

  90. Rinsho N (1995) Primary hyperparathyroidism, pathologic findings and ultrastructure. Jpn J Clin Med 53:861–863

    Google Scholar 

  91. Chen CC, Premkumar A, Hill SC, Skarulis MC, Spiegel AM (1995) Tc-99msestamibi imaging of a hyperfunctioning parathyroid autograft with Doppler ultrasound and MRI correlation. Clin Nucl Med 20:222–225

    Article  CAS  PubMed  Google Scholar 

  92. Lee VS, Spritzer CE, Coleman RE, Wilkinson RH Jr, Coogan AC, Leight GS Jr (1995) Hyperparathyroidism in high-risk surgical patients: evaluation with double-phase technetium-99msestamibiimaging. Radiology 197:627–633

    Article  CAS  PubMed  Google Scholar 

  93. Walker RP, Paloyan E, Gopalsami C (2004) Symptoms in patients with primary hyperparathyroidism: muscle weakness or sleepiness. Endocr Pract 10:404–408

    Article  PubMed  Google Scholar 

  94. Wang CA (1977) Parathyroidre-exploration: a clinical and pathological study of 112 cases. Ann Surg 186:140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Assalia A, Inabnet WB (2004) Endoscopicparathyroidectomy. Otolaryngol Clin N Am 37:871–886

    Article  Google Scholar 

  96. O’Doherty MJ, Kettle AG (2003) Parathyroid imaging: preoperative localisation. Nucl Med Commun 24:125–131

    Article  PubMed  Google Scholar 

  97. Mitchell BK, Merrell RC, Kinder BK (1995) Localization studies in patients with hyperparathyroidism. Endocr Surg 75:483–498

    CAS  Google Scholar 

  98. Kao A, Shiau YC, Tsai SC, Wang JJ, Ho ST (2002) Technetium-99mmethoxyisobutylisonitrile imaging for parathyroid adenoma: relationship to P-glycoprotein or multidrug resistance-related protein expression. Eur J Nucl Med Mol Imaging 29:1012–1015

    Article  CAS  PubMed  Google Scholar 

  99. Goris ML, Basso LV, Keeling C (1991) Parathyroid imaging. J Nucl Med 32:887–889

    CAS  PubMed  Google Scholar 

  100. O’Doherty MJ, Kettle AG, Wells P, Collins RE, Coakley AJ (1992) Parathyroid imaging with technetium99m-sestamibi: preoperative localization and tissue up take studies. J Nucl Med 33:313–318

    PubMed  Google Scholar 

  101. Takebayashi S, Hidai H, Chiba T, Takaga Y, Nagatani Y, Matsubara S (1999) Hyper functional parathyroid glands with Tc-99mMIBI scan: semiquantitative analysis correlated with histologic findings. J Nucl Med 40:1792–1797

    CAS  PubMed  Google Scholar 

  102. Sandrock D, Merino MJ, Norton JA, Neumann RD (1993) Ultrastructural histology correlates with results of thallium-201/technetium-99m parathyroid subtraction scintigraphy. J Nucl Med 34:24–29

    CAS  PubMed  Google Scholar 

  103. Naddaf S, Anim JJ, Farghaly MM, Behbehani AE, Alshomar KA, Elgazzar AH (2004) Ultrastructure of hyperfunctioning parathyroid glands: does it explain various patterns of sestamibi uptake. Proceedings of the 9th annual Health science poster day and conference, Kuwait, April 19–21, p 61

    Google Scholar 

  104. Dontu VS, Kettle AG, O’Doherty MJ, Coakley AJ (2004) Optimization of parathyroid imaging by simultaneous dual energy planar and single photon emission tomography. Nucl Med Commun 25:1089–1093

    Article  PubMed  Google Scholar 

  105. Melton GB, Somervell H, Friedman KP, Zeiger MA, Cahid CA (2005) Interpretation of 99mTcsestamibiparathyroid SPECT scan is improved when read by the surgeon and nuclear medicine physician together. Nucl Med Commun 26:633–638

    Article  PubMed  Google Scholar 

  106. Parikh AM, Suliburk JW, Morón FE (2018) Imaging localization and surgical approach in the management of ectopic parathyroid adenomas. Endocr Pract 24(6):589–598

    Google Scholar 

  107. Takahashi H et al (2013) Fusion images of MIBISPECT and MDCT improved iagnostic performance of localization study in hyperparathyroidism with multigland disease. J Nucl Med 54:44

    Google Scholar 

  108. Zeng M, Liu W, Zha X, Tang S, Liu J, Yang G et al (2019) 99mTc-MIBI SPECT/CT imaging had high sensitivity in accurate localization of parathyroids before parathyroidectomy for patients with secondary hyperparathyroidism. Ren Fail 41(1):885–892

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Beggs AD, Hain SF (2005) Localization of parathyroid adenomas using 11C-methionine positron emission tomography. Nucl Med Commun 26:133–136

    Article  PubMed  Google Scholar 

  110. Broos WA, Wondergem M, Knol RJ, van der Zant FM (2019) Parathyroid imaging with 18 F-fluorocholine PET/CT as a first-line imaging modality in primary hyperparathyroidism: a retrospective cohort study. EJNMMI Res 9:1–7

    Article  Google Scholar 

  111. Erickson LA (2014) Adrenal gland histology. In: Atlas of endocrine pathology. Springer, New York, NY, pp 147–153

    Chapter  Google Scholar 

  112. Aron DC, Tyrrell JB (1997) Glucocorticoids and adrenal androgens. In: Greenspan FS, Strewler GJ (eds) Basic and clinical endocrinology, 5th edn. Appleton and Lange, Norwalk, p 318

    Google Scholar 

  113. Goldfien A (1997) Adrenal medulla. In: Greenspan FS, Strewler GJ (eds) Basic and clinical endocrinology, 5th edn. Appleton and Lange, Norwalk, p 382

    Google Scholar 

  114. Ryan JJ, Rezkalla MA, Rizk SN, Peterson KG, Wiebe RH (1995) Testosterone-secreting adrenal adenoma that contained crystalloids of Reinke in an adult female patient. Mayo Clin Proc 70:380–383

    Article  CAS  PubMed  Google Scholar 

  115. Lynn MD, Gross MD, Shapiro B, Bassett D (1986) The influence of hypercholesterolemia on the adrenal uptake and metabolic handling of I-1316β-iodomethyl-19-norcholesterol(NP-59). Nucl Med Commun 1:631–635

    Article  Google Scholar 

  116. Hedeland H, Ostberg G, Hokfelt B (1968) On the prevalence of adrenocortical adenomas in an autopsy material in relation to hypertension and diabetes. Acta Med Scand 184:211–214

    Article  CAS  PubMed  Google Scholar 

  117. Copeland PM (1983) The incidentally discovered adrenal mass. Ann Intern Med 98:940–945

    Article  CAS  PubMed  Google Scholar 

  118. Vos EL, Grewal RK, Russo AE, Reidy-Lagunes D, Untch BR, Gavane SC et al (2020) Predicting malignancy in patients with adrenal tumors using 18F-FDG-PET/CT SUVmax. J Surg Oncol 122(8):1821–1826

    Article  PubMed  PubMed Central  Google Scholar 

  119. Volpe C, Enberg U, Sjögren A et al (2008) The role of adrenal scintigraphy in the preoperative management of primary aldosteronism. Scand J Surg 97:248–253

    Article  CAS  PubMed  Google Scholar 

  120. Evangelista L, DeFalco T, di Nuzzo C et al (2008) Utility of adrenal cortical scintigraphy with I-6-$-methyl-131 norcholesterol in a case of mismatch between morphological and functional PET imaging. Thyroid Sci 3:CR1–CR3

    Google Scholar 

  121. Omura M, Saito J, Yamaguchi K, Kakuta Y, Nishikawa T (2004) Prospective study on the prevalence of secondary hypertension among hypertensive patients visiting a general outpatient clinic in Japan. Hypertens Res 27:193–202

    Article  PubMed  Google Scholar 

  122. Huether SE, Tomky D (1998) Alterations of hormonal regulation. In: McCance KL, Huether SE (eds) Pathophysiology, the biologic basis for disease in adults and children, 3rd edn. Mosby, St Louis, p 700

    Google Scholar 

  123. Spencer RP (1998) Tumor-seeking radiopharmaceuticals: nature and mechanisms. In: Murray IP, Ell PJ (eds) Nuclear medicine in clinical diagnosis and treatment, 2nd edn. Churchill Livingstone, Hong Kong, p 764

    Google Scholar 

  124. Elgazzar AH, Gelfand MJ, Washburn LC, Clark J, Nagaraj N, Cummings D, Hughes J et al (1995) I-123MIBGscintigraphy in adults, are port of clinical experience. Clin Nucl Med 20:147

    Article  CAS  PubMed  Google Scholar 

  125. Gelfand MJ, Elgazzar AH, Kriss VM, Masters PR, Golsch GJ (1994) Iodine-123MIBGSPECT versus planar imaging in children with neural crest tumors. J Nucl Med 35:1753–1756

    CAS  PubMed  Google Scholar 

  126. Parisi MT, Sandler ED, Hattner RS (1992) The biodistribution of metaiodobenzylguanidine. Semin Nucl Med 22:46–48

    Article  CAS  PubMed  Google Scholar 

  127. Okuyama C, Ushijima Y, Kubota T, Yoshida T, Nakai T, Kobayashi K, Nishimura T (2003) 123I-Metaiodobenzyl guanidine up take in the nape of the neck of children: likely visualization of brown adipose tissue. J Nucl Med 44:1421–1425

    CAS  PubMed  Google Scholar 

  128. Shapiro B, Copp JE, Sisson JC, Eyre PL, Wallis J, Beierwaltes WH (1985) Iodine-131metaiodobenzyl-guanidine in the locating of suspected pheochromocytoma: experience in 400 cases. J Nucl Med 26:576

    CAS  PubMed  Google Scholar 

  129. Paltiel HJ, Gelfand MJ, Elgazzar AH, Washburn LC, Harris RE, Masters PR, Golsch GJ (1994) Neural crest tumors: I-123MIBG imaging in children. Radiology 190:118

    Article  Google Scholar 

  130. Liu B, Servaes S, Zhuang H (2018) SPECT/CT MIBG imaging is crucial in the follow-up of the patients with high-risk neuroblastoma. Clin Nucl Med 43(4):232–238

    Article  CAS  PubMed  Google Scholar 

  131. Aboian MS, Huang SY, Hernandez-Pampaloni M, Hawkins RA, VanBrocklin HF, Huh Y et al (2021) 124I-MIBG PET/CT to monitor metastatic disease in children with relapsed neuroblastoma. J Nucl Med 62(1):43–47

    Article  CAS  PubMed  Google Scholar 

  132. Samim A, Tytgat GA, Bleeker G, Wenker S, Chatalic KL, Poot AJ et al (2021) Nuclear medicine imaging in neuroblastoma: current status and new developments. J Personal Med 11(4):270

    Article  Google Scholar 

  133. Shalaby-Rana E, Majd M, Andrich MP, Movassaghi N (1997) In-111pentetreotidescintigraphy in patients with neuroblastoma. Comparison with I-131MIBG, N-Myconcogene amplification, and patient outcome. Clin Nucl Med 22:315–319

    Article  CAS  PubMed  Google Scholar 

  134. Kropp J, Hofmann M, Bihl H (1997) Comparison of MIBG and pentetreotidescintigraphy in children with neuroblastoma. Is the expression of somatostatin receptors aprognostic factor? Anticancer Res 17:1583–1588

    CAS  PubMed  Google Scholar 

  135. Tenenbaum F, Lumbroso J, Schlumberger M, Mure A, Plouin PF, Caillou B, Parmentier C (1995) Comparison of radiolabeled octreotide and meta-iodobenzylguanidine (MIBG) scintigraphy in malignant pheochromocytoma. J Nucl Med 36:1–6

    CAS  PubMed  Google Scholar 

  136. Pashankar FD, O’Dorisio MS, Menda Y (2005) MIBG and somatostatin receptor analogs in children: current concepts on diagnostic and therapeuticuse. J Nucl Med 46(Suppl 1):55S–61S

    CAS  PubMed  Google Scholar 

  137. Manil L, Edeline V, Jlumbroso J, Lequen H, Zucker JM (1996) Indium-111-pentetreotidescintigraphy in children with neuroblast-derived tumors. J Nucl Med 37:893–896

    CAS  PubMed  Google Scholar 

  138. Krausz Y, Keidar Z, Kogan I, Even-Sapir E, Bar-Shalom R, Engel A, Rubinstein R et al (2003) SPECT/CT hybrid imaging with 111In-pentetreotide in assessment of neuroendocrine tumours. Clin Endocrinol 59:565–573

    Article  Google Scholar 

  139. Andersson P, Forssel-Aronsson E, Johanson V, Wangberg B, Nilsson O, Fjalling M, Ahlman H (1996) Internalization of indium-111intohuman neuroendocrine tumor cells after incubation with indium-111-DTPA-D-Phe1-Octreotide. J Nucl Med 37:2002–2006

    CAS  PubMed  Google Scholar 

  140. Andersson P, Forssel-Aronsson E, Johanson V, Wangberg B, Nilsson O, Fjalling M, Ahlman H (1996) Internalization of indium-111 into human neuroendocrine tumor cells after incubation with indium-111-DTPA-D-Phe 1-octreotide. J Nucl Med 37:2002–2200

    CAS  PubMed  Google Scholar 

  141. Trampal C, Engler H, Juhlin C, Bergstrom M, Langstrom B (2004) Pheochromocytomas: detection with C-11hydroxyephedrine PET. Radiology 230:423–428

    Article  PubMed  Google Scholar 

  142. Ruf J, Hueck F, Schiefer J, Denecke T, Elgeti F et al (2010) Impact of multiphase 68Ga-DOTATOC-PET/CT on therapy management in patients with neuroendocrine tumors. Neuroendocrinology 91:101–109

    Article  CAS  PubMed  Google Scholar 

  143. Ilias I, Yu J, Carrasquillo JA, Chen CC, Eisenhofer G, Whatley M, McElroy B et al (2003) Superiority of 6-[18F]-fluorodopamine positron emission tomography versus [131I]-metaiodobenzylguanidinescintigraphy in the localization of metastatic pheochromocytoma. J Clin Endocrinol Metab 88:4083–4087

    Article  CAS  PubMed  Google Scholar 

  144. Brunt LM, Moley JF (2001) Adrenal incidentaloma. World J Surg 25:905–913

    Article  CAS  PubMed  Google Scholar 

  145. Mantero F, Masini AM, Opocher G, Giovagnetti M, Arnaldi G (1997) Adrenal incidentaloma: an overview of hormonal data from the National Italian Study Group. Horm Res 47:284–289

    Article  CAS  PubMed  Google Scholar 

  146. Minn H, Salonen A, Friberg J, Roivainen A, Viljanen T, Langsjo J, Salmi J et al (2004) Imaging of adrenal incidentalomas with PET using C-11metomidate and 18F-FDG. J Nucl Med 45:972–979

    CAS  PubMed  Google Scholar 

  147. Khan TS, Sundin A, Juhlin C, Langstrom B, Bergström M, Eriksson B (2003) 11C-metomidatePET imaging of adrenocortical cancer. Eur J Nucl Med Mol Imaging 30:403–410

    Article  PubMed  Google Scholar 

  148. Rubello D, Bui C, Casara D et al (2002) Functional scintigraphy of the adrenal gland. Eur J Endocrinol 147:13–28

    Article  CAS  PubMed  Google Scholar 

  149. Akkuş G, Güney IB, Ok F, Evran M, Izol V et al (2019) Diagnostic efficacy of 18F-FDG PET/CT in patients with adrenal incidentaloma. Endocr Connect 8:838–845

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Alenezi, S.A., Elgazzar, A.H. (2022). Endocrine System. In: Elgazzar, A.H. (eds) The Pathophysiologic Basis of Nuclear Medicine. Springer, Cham. https://doi.org/10.1007/978-3-030-96252-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-96252-4_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-96251-7

  • Online ISBN: 978-3-030-96252-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics