Skip to main content

Abstract

Inflammation was described as early as 4000 BC in an Egyptian papyrus and is still a common problem despite continuous advancements in prevention and treatment methods. Over the years new strains of microorganisms causing infections appear such as the recently discovered new Covid-19 infection. The proper diagnosis and delineation of the site and extent of inflammation are crucial to the clinical management of infection and for monitoring the response to therapy. The strategy to reach diagnosis by imaging depends on understanding the pathophysiologic basis of different types of infection and the mechanisms of accumulation of the radiotracers for scintigraphic diagnosis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Granger DN, Senchenkova E (2010) Inflammation and the microcirculation. Morgan & Claypool Life Sciences, San Rafael

    Book  Google Scholar 

  2. Ciotti M, Ciccozzi M, Terrinoni A, Jiang WC, Wang CB, Bernardini S (2020) The COVID-19 pandemic. Critical reviews in clinical laboratory sciences, 57(6):365–388

    Google Scholar 

  3. McCane KL, Huether SE (2019) Innate immunity: inflammation. In: McCance KL, Huether SE (eds) (2019) Pathophysiology: The biologic basis for disease in adults and children, 8th edn. Elsevier, St. Louis, MO

    Google Scholar 

  4. Signore A (2013) About inflammation and infection. Signore EJNMMI Res 3:8–9

    Article  PubMed  Google Scholar 

  5. Nathan C (2002) Points of control in inflammation. Nature 420:846–852

    Article  CAS  PubMed  Google Scholar 

  6. Kumar V, Abbas A, Aster JC (2020) Robbins and Cotzan, pathologic basis of disease, 10th edn. Saunders, Philadelphia

    Google Scholar 

  7. Rankin JA (2004) Biological mediators of acute inflammation. Clin Issues 15:3–17

    Article  Google Scholar 

  8. Botting RM, Botting JH (2000) Pathogenesis and mechanisms of inflammation and pain: an overview. Clin Drug Investig 19(suppl 2):1–7

    Article  CAS  Google Scholar 

  9. Hernandez-Pando R, Bornstein QL, Aguilar LD, Orozo EH, Madrigal VK, Martinez CE (2000) Inflammatory cytokine production by immunological and foreign body multinucleated giant cells. Immunology 100:352–358

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Reijnen MM, Bleichrodt RP, van Goor H (2003) Pathophysiology of intra-abdominal adhesion and abscess formation, and the effect of hyaluronan. Br J Surg 90:533–541

    Article  CAS  PubMed  Google Scholar 

  11. Mazuski JE, Solomkin JS (2009) Intra-abdominal infections. Surg Clin North Am 89:421–437

    Article  PubMed  Google Scholar 

  12. Hasper D, Schefold JC, Baumgart DC (2009) Management of severe abdominal infections. Recent Pat Antiinfect Drug Discov 4:57–65

    Article  CAS  PubMed  Google Scholar 

  13. Zibari GB, Maguire S, Aultman DF, McMillan RW, McDonald JC (2000) Pyogenic liver abscess. Surg Infect 1:15–21

    Article  CAS  Google Scholar 

  14. Greth J, Torok HP, Koenig A, Folwaczny C (2004) Comparison of inflammatory bowel disease at younger and older age. Eur J Med Res 9:552–554

    CAS  PubMed  Google Scholar 

  15. Inoue S, Nakase H, Chiba T (2005) Etiopathogenesis and aggravating factors of ulcerative colitis. Nippon Rinsho 63:757–762

    PubMed  Google Scholar 

  16. Baron S, Turck D, Leplat C, Merle V, Gower-Rousseau C, Marti R, Yzet T, Lerebours E, Dupas JL, Debeugny S, Salomez JL, Cortot A, Colombel JF (2005) Environmental risk factors in paediatric inflammatory bowel diseases: a population based case control study. Gut 54:357–363

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kolls JK, Zhang Z (2005) Anti-interleukin-12 antibody for active Crohn’s disease. N Engl J Med 352:627–628

    Article  PubMed  Google Scholar 

  18. Kolls JK, Zhang Z (2004) Anti-interleukin-12 antibody for active Crohn’s disease. N Engl J Med 351:2069–2079

    Article  Google Scholar 

  19. Shanahan F (2005) Physiological basis for novel drug therapies used to treat the inflammatory bowel diseases I. Pathophysiological basis and prospects for probiotic therapy in inflammatory bowel disease. Am J Physiol Gastrointest Liver Physiol 288:G417–G421

    Article  CAS  PubMed  Google Scholar 

  20. Sakamoto N, Kono S, Wakai K, Fukuda Y, Satomi M, Shimoyama T, Inaba Y, Miyake Y, Sasaki S, Okamoto K, Kobashi G, Washio M, Yokoyama T, Date C, Tanaka H, Epidemiology Group of the Research Committee on Inflammatory Bowel Disease in Japan (2004) Dietary risk factors for inflammatory bowel disease: a multicenter case–control study in Japan. Inflamm Bowel Dis 11:154–163

    Article  Google Scholar 

  21. Regueiro M, Kip KE, Cheung O, Hegazi RA, Plevy S (2005) Cigarette smoking and age at diagnosis of inflammatory bowel disease. Inflamm Bowel Dis 11:42–47

    Article  PubMed  Google Scholar 

  22. Pierik M, Yang H, Barmada MM, Cavanaugh JA, Annese V, Brant SR, Cho JH, Duerr RH, Hugot JP, DP MG, Paavola-Sakki P, Radford-Smith GL, Pavli P, Silverberg MS, Schreiber S, Taylor KD, Vlietinck R, IBD International Genetics Consortium (2005) The IBD international genetics consortium provides further evidence for linkage to IBD4 and shows gene-environment interaction. Inflamm Bowel Dis 11:1–7

    Article  PubMed  Google Scholar 

  23. Hatoum OA, Binion DG (2005) The vasculature and inflammatory bowel disease: contribution to pathogenesis and clinical pathology. Inflamm Bowel Dis 11:304–313

    Article  PubMed  Google Scholar 

  24. Zumla A, James DG (1996) Granulomatous infections: etiology and classification. Clin Infect Dis 23:146–158

    Article  CAS  PubMed  Google Scholar 

  25. Culver DA, Valeyre D (2016) Emerging ideas about sarcoidosis pathophysiology. Curr Opin Pulm Med 22:466–468

    Article  PubMed  Google Scholar 

  26. Fink CW, Cimaz R (1997) Early onset sarcoidosis: not a benign disease. J Rheumatol 24:174–177

    CAS  PubMed  Google Scholar 

  27. Center D, McFadden R (1985) Pulmonary defense mechanisms. In: Sodeman W, Sodeman T (eds) Pathologic physiology, mechanisms of disease. Saunders, Philadelphia, pp 460–481

    Google Scholar 

  28. Mandel J, Weinberger SE (2001) Clinical insights and basic science correlates in sarcoidosis. Am J Med Sci 321:99–107

    Article  CAS  PubMed  Google Scholar 

  29. Medical Section of the American Lung Association (1997) Diagnosis and treatment of disease caused by nontuberculous mycobacteria. Am J Respir Crit Care Med 156:S1–S25

    Article  Google Scholar 

  30. Sharma SK, Mohan A (2002) Sarcoidosis: global scenario & Indian perspective. Indian J Med Res 116:221–247

    CAS  PubMed  Google Scholar 

  31. Avino LJ, Naylor SM, Roecker AM (2016) Pneumocystis jirovecii Pneumonia in the Non-HIV-infected population. Ann Pharmacother 50:673–679

    Article  CAS  PubMed  Google Scholar 

  32. Nagai S, Shigematsu M, Hamada K, Izumi T (1999) Clinical courses and prognoses of pulmonary sarcoidosis. Curr Opin Pulm Med 5:293–298

    Article  CAS  PubMed  Google Scholar 

  33. Wazir JF, Ansari NA (2004) Pneumocystis carinii infection. Update and review. Arch Pathol Lab Med 128:1023–1027

    Article  PubMed  Google Scholar 

  34. Raghu G, Collard HR, Egan JJ, Martinez FJ, Behr J et al (2011) An official ATS/ERS/JRS/ALAT statement: idiopathic pulmonary fibrosis: evidence-based guidelines for diagnosis and management. Am J Respir Crit Care Med 183:788–824

    Article  PubMed  PubMed Central  Google Scholar 

  35. Travis WD, Costabel U, Hansell DM, King TE Jr, Lynch DA et al (2013) An official American Thoracic Society/European Respiratory Society statement: update of the international multidisciplinary classification of the idiopathic interstitial pneumonias. Am J Respir Crit Care Med 188:733–748

    Article  PubMed  PubMed Central  Google Scholar 

  36. Pinlaor S, Mootsikapun P, Pinlaor P, Phunmanee A, Pipitgool V, Sithithaworn P, Chumpia W, Sithithaworn J (2004) PCR diagnosis of Pneumocystis carinii on sputum and bronchoalveolar lavage samples in immunocompromised patients. Parasitol Res 94:213–218

    Article  PubMed  Google Scholar 

  37. Chisholm A, Collard HR, Flaherty KR, Myers J, Raghu G et al (2017) The diagnosis of idiopathic pulmonary fibrosis: current and future approaches. Lancet 5:61–71

    Google Scholar 

  38. Wiersinga WJ, Rhodes A, Cheng AC, Peacock SJ, Prescott HC (2020) Pathophysiology, transmission, diagnosis, and treatment of coronavirus disease 2019 (COVID-19): a review. JAMA 324:782–793. https://doi.org/10.1001/jama.2020.12839

    Article  CAS  PubMed  Google Scholar 

  39. Walsh C, Collyns T (2020) Pathophysiology of urinary tract infections. Surgery 38:191–196

    Google Scholar 

  40. Kasseh (1966) Pathogenesis of pyelonephritis in the kidney. In: Mostafi FK, Smith DE (eds) The kidney. Williams & Wilkins, Baltimore, pp 204–212

    Google Scholar 

  41. Meguid El Nahas A, Bello Aminu K (2005) Chronic kidney disease: the global challenge. Lancet 365:331–340

    Article  CAS  PubMed  Google Scholar 

  42. White SL, Cass A, Atkins RC, Chadban SJ (2005) Chronic kidney disease in the general population. Adv Chronic Kidney Dis 12:5–13

    Article  CAS  PubMed  Google Scholar 

  43. Hooton TM, Stamm WE (1997) Diagnosis and treatment of uncomplicated urinary tract infection. Infect Dis Clin N Am 11:551–581

    Article  CAS  Google Scholar 

  44. Ronald AR, Harding GKM (1997) Complicated urinary tract infections. Infect Dis Clin N Am 11:583–592

    Article  CAS  Google Scholar 

  45. Govan A, Macfarlane P, Callander R (1988) Pathology illustrated, 2nd edn. Churchill Livingstone, Edinburgh

    Google Scholar 

  46. Çek M, Sturdza L, Pilatz A (2017) Acute and chronic epididymitis. Eur Urol Suppl 16:124–131

    Article  Google Scholar 

  47. Baddour LM (2000) Cellulitis syndromes: an update. Int J Antimicrob Agents 14:113–116

    Article  CAS  PubMed  Google Scholar 

  48. Keynan Y, Rubinstein E (2013) Pathophysiology of infective endocarditis. Curr Infect Dis Rep 15:342–346

    Google Scholar 

  49. Fabrizio Monaco F (2003) Classification of thyroid diseases: suggestions for a revision. J Clin Endocrinol Metabol 88:1428–1432

    Article  CAS  Google Scholar 

  50. Vehling D, Neurath M, Siessmeier T, Schunk K, Bartenstein P (2000) FDG-PET, anti-granulocyte-scintigraphy and hydro-MRI in the determination of bowel wall inflammation in Crohn’s disease. J Nucl Med 41:11P

    Google Scholar 

  51. Pavlidis ET, Pavlidis TE (2019) A review of primary thyroid lymphoma: Molecular factors, diagnosis and management J Invest Surg; 32:137–142

    Google Scholar 

  52. Calhoun JH, Manring MM, Shirtliff M (2009) Osteomyelitis of the long bones. Semin Plast Surg 23:59–72

    Article  PubMed  PubMed Central  Google Scholar 

  53. Haas DW, McAndrew M (1996) Bacterial osteomyelitis in adults: evolving considerations in diagnosis and treatment. Am J Med 101:550–561

    Article  CAS  PubMed  Google Scholar 

  54. Cierny G, Mader JT, Pennick H (1985) A clinical staging system of adult osteomyelitis. Contemp Orthop 10:17–37

    Google Scholar 

  55. Mandell GA (1996) Imaging in the diagnosis of musculoskeletal infections in children. Curr Probl Pediatr 26:218–237

    Article  CAS  PubMed  Google Scholar 

  56. Mader JT, Dhraminder M, Calhoun J (1997) A practical guide to the diagnosis and management of bone and joint infections. Drugs 54:253–264

    Article  CAS  PubMed  Google Scholar 

  57. Bonakdar-pour A, Gaines VD (1983) The radiology of osteomyelitis. Orthop Clin North Am 14:21–37

    Article  CAS  PubMed  Google Scholar 

  58. Trueta J (1959) The three types of acute hematogenous osteomyelitis: a clinical and vascular study. J Bone Joint Surg 41B:671–680

    Article  Google Scholar 

  59. Elgazzar AH, Abdel-Dayem HM (1999) Imaging skeletal infections: evolving considerations. In: Feeman LM (ed) Nuclear medicine annual. Lippincott Williams & Wilkins, Philadelphia, pp 157–191

    Google Scholar 

  60. Elgazzar AH, Abdel-Dayem HM, Clark J, Maxon HR (1995) Multimodality imaging of osteomyelitis. Eur J Nucl Med 22:1043–1063

    Article  CAS  PubMed  Google Scholar 

  61. Torda AJ, Gottlieb T, Bradbury R (1995) Pyogenic vertebral osteomyelitis: analysis of 20 cases and review. Clin Infect Dis 20:320–328

    Article  CAS  PubMed  Google Scholar 

  62. Song KS, Ogden JA, Ganey T, Guidera KT (1997) Contiguous discitis and osteomyelitis in children. J Pediatr Orthop 17:470–477

    Article  CAS  PubMed  Google Scholar 

  63. Ring D, Wenger DR, Johnson C (1994) Infectious spondylitis in children. The convergence of discitis and vertebral osteomyelitis. Orthop Trans 18:97–98

    Google Scholar 

  64. Bauer TM, Pipperet H, Zimmerli W (1997) Vertebral osteomyelitis caused by group B streptococci [streptococcus agalactiae] secondary to urinary tract infection. Eur J Microb Infect Dis 16:244–246

    Article  CAS  Google Scholar 

  65. Perrone C, Saba J, Behloul Z, Salmon-Ceron D, Leport C, Vilde JL, Kahn MF (1994) Pyogenic and tuberculous spondylodiskitis [vertebral osteomyelitis] in 80 adult patients. Clin Infect Dis 19:746–750

    Article  Google Scholar 

  66. Sundberg SB, Savage JP, Foster BK (1989) Technetium phosphate bone scan in the diagnosis of septic arthritis in childhood. J Pediatr Orthop 9:579–585

    Article  CAS  PubMed  Google Scholar 

  67. Love C, Palestro CJ (2004) Radionuclide imaging of infection. J Nucl Med Tech 32:47–57

    Google Scholar 

  68. Arnon-Sheleg E, Israel O, Keidar Z (2020) PET/CT imaging in soft tissue infection and inflammation—an update. Semin Nucl Med 50:35–49

    Article  PubMed  Google Scholar 

  69. Kouijzer IJE, Mulders-Manders CM, Bleeker-Rovers CP, Oyen WJG (2018) Fever of unknown origin: the value of FDG-PET/CT. Semin Nucl Med 48:100–107

    Article  PubMed  Google Scholar 

  70. Toussaint E, Bahel-Ball E, Vekemans M, Georgala A, Al-Hakak L, Paesmans M, Aoun M (2006) Causes of fever in cancer patients (prospective study over 477 episodes). Support Care Cancer 14:763–769

    Article  CAS  PubMed  Google Scholar 

  71. Schönau V, Vogel K, Englbrecht M et al (2018) The value of 18F-FDG-PET/CT in identifying the cause of fever of unknown origin (FUO) and inflammation of unknown origin (IUO): data from a prospective study. Ann Rheum Dis 77:70–77

    Article  PubMed  CAS  Google Scholar 

  72. Martin C, Castaigne C, Tondeur M, Flamen P, De Wit S (2013) Role and interpretation of fluorodeoxyglucose-positron emission tomography/computed tomography in HIV-infected patients with fever of unknown origin: a prospective study. HIV Med 14(8):455–462. https://doi.org/10.1111/hiv.12030. Epub 2013 Mar 20. PMID: 23517190

    Article  CAS  PubMed  Google Scholar 

  73. Lazzeri E, Erba P, Perri M, Doria R, Tescini C et al (2010) Clinical impact of SPECT/CT with In-111 biotin on the management of patients with suspected spine infection. Clin Nucl Med 35:12–17

    Article  PubMed  Google Scholar 

  74. Sfakianakis GN, Al-Sheikh W, Heal A et al (1982) Comparison of scintigraphy with In-111 leukocytes and Ga-67 in the diagnosis of occult sepsis. J Nucl Med 23:618–626

    CAS  PubMed  Google Scholar 

  75. Liberatore M, Calandri E, Ciccariello G, Fioravanti M, Megna V, Rampin L, Marzola MC, Zerizer I, Al-Nahhas A, Rubello D (2010) The labeled-leukocyte scan in the study of abdominal abscesses. Mol Imaging Biol 12:563–569

    Article  PubMed  Google Scholar 

  76. Blazeski A, Kozloff KM, Scott PJ (2010) Besilesomab for imaging inflammation and infection in peripheral bone in adults with suspected osteomyelitis. Rep Med Imaging 3:1–11

    Google Scholar 

  77. Gratz S, Reize P, Pfestroff A, Höffken H (2012) Intact versus fragmented 99mTc-monoclonal antibody imaging of infection in patients with septically loosened total knee arthroplasty. J Int Med Res 40:1335–1342

    Article  CAS  PubMed  Google Scholar 

  78. Goldsmith SJ, Vallabhajosula S (2009) Clinically proven radiopharmaceuticals for infection imaging: mechanisms and applications. Semin Nucl Med 39:2–10

    Article  PubMed  Google Scholar 

  79. Sierra JM, Rodriguez-Puig D, Soriano A et al (2008) Accumulation of 99mTc-Ciprofloxacin in Staphylococcus aureus and Pseudomonas aeruginosa. Antimicrob Agents Chemother 52:2691–2692

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. O’Sullivan MM, Powell N, French AP, Williams KE, Morgan JR, Williams BD (1988) Inflammatory joint disease: a comparison of liposome scanning, bone scanning and radiography. Ann Rheum Dis 47:485–491

    Article  PubMed  PubMed Central  Google Scholar 

  81. Boerman OC, Storm G, Oyen WJG, van Bloois L, van der Meer JWM (1995) Sterically stabilized liposomes labeled with In-111 to image focal infection. J Nucl Med 36:1639–1644

    CAS  PubMed  Google Scholar 

  82. Blockmans D, Knockaert D, Maes A et al (2001) Clinical value of [18F]fluorodeoxyglucose positron emission tomography for patients with fever of unknown origin. Clin Infect Dis 32:191–196

    Article  CAS  PubMed  Google Scholar 

  83. Meller J, Altenvoerde G, Munzel U et al (2000) Fever of unknown origin: prospective comparison of [18F]FDG imaging with a double-head coincidence camera and gallium-67 citrate SPET. Eur J Nucl Med 27:1617–1625

    Article  CAS  PubMed  Google Scholar 

  84. Bleeker-Rovers CP, de Kleijn EMHA, Corstens FHM et al (2004) Clinical value of FDG PET in patients with fever of unknown origin and patients suspected of focal infection or inflammation. Eur J Nucl Med Mol Imaging 31:29–37

    Article  PubMed  Google Scholar 

  85. Lauri C, Tamminga M, Glaudemans AWJM, Orozco JLE, Erba PA et al (2017) Detection of osteomyelitis in the diabetic foot by imaging techniques: a systematic review and meta-analysis comparing MRI, white blood cell scintigraphy, and FDG-PET. Diabetes Care 40:1111–1120

    Article  PubMed  Google Scholar 

  86. Chacko TK, Zhuang HM, Alavi A (2002) FDG-PET is an effective alternative to WBC imaging in diagnosing and excluding orthopedic infections. J Nucl Med 43:126P

    Google Scholar 

  87. Matsui T, Nakata N, Nagai S, Nakatani A, Takahashi M et al (2009) Inflammatory cytokines and hypoxia contribute to 18F-FDG uptake by cells involved in pannus formation in rheumatoid arthritis. J Nucl Med 50:920–926

    Article  CAS  PubMed  Google Scholar 

  88. Chacko TK, Moussavian B, Zhuang HM, Woods K, Alavi A (2002) Critical role of FDG-PET imaging in the management of patients with suspected infection in diverse settings. J Nucl Med 43:126P

    Google Scholar 

  89. El-Zeftawy H, LaBombardi V, Dakhel M, Heiba S, Adbel Dayem H (2002) Evaluation of 18F-FDG PET imaging in diagnosis of disseminated mycobacterium avium complex (DMAC) in AIDS patients. J Nucl Med 43:127P

    Google Scholar 

  90. Kumar V, Boddieti DK (2013) (68)Ga-radiopharmaceuticals for PET imaging of infection and inflammation. Recent Results Cancer Res 194:189

    Article  CAS  PubMed  Google Scholar 

  91. Emmi V, Sganga G (2008) Diagnosis of intra-abdominal infections: clinical findings and imaging. Infez Med 16(Suppl 1):19–30

    PubMed  Google Scholar 

  92. Chen SC, Yen CH, Lai KC, Tsao SM, Cheng KS, Chen CC, Lee MC, Chou MC (2005) Pyogenic liver abscesses with Escherichia coli: etiology, clinical course, outcome, and prognostic factors. Wien Klin Wochenschr 117(23–24):809–815

    Article  PubMed  Google Scholar 

  93. Bulger EM, McMahon K, Jurkovich GJ (2003) The morbidity of penetrating colon injury. Injury 34:41–46

    Article  PubMed  Google Scholar 

  94. Capitan Manjon C, Tejido Sanchez A, Piedra Lara JD, Martinez Silva V, Cruceyra Betriu G, Rosino Sanchez A, Garcia Penalver C, LeivaGalvis O (2003) Retroperitoneal abscesses—analysis of a series of 66 cases. Scand J Urol Nephrol 37:139–144

    Article  PubMed  Google Scholar 

  95. Haraldsen P, Andersson R (2003) Quality of life, morbidity, and mortality after surgical intensive care: a follow-up study of patients treated for abdominal sepsis in the surgical intensive care unit. Eur J Surg Suppl 588:23–27

    Google Scholar 

  96. Kaplan GG, Gregson DB, Laupland KB (2004) Population-based study of the epidemiology of and the risk factors for pyogenic liver abscess. Clin Gastroenterol Hepatol 2:1032–1038

    Article  PubMed  Google Scholar 

  97. Tunuguntla A, Raza R, Hudgins L (2004) Diagnostic and therapeutic difficulties in retroperitoneal abscess. South Med J 97:1107–1109

    Article  PubMed  Google Scholar 

  98. Men S, Akhan O, Koroglu M (2002) Percutaneous drainage of abdominal abscess. Eur J Radiol 43:204–218

    Article  PubMed  Google Scholar 

  99. Morales CH, Villegas MI, Villavicencio R, Gonzalez G, Perez LF, Pena AM, Vanegas LE (2004) Intra-abdominal infection in patients with abdominal trauma. Arch Surg 139:1278–1285

    Article  PubMed  Google Scholar 

  100. Rubin RH, Fischman AJ (1996) Radionuclide imaging of infection in the immunocompromised host. Clin Infect Dis 22:414–422

    Article  CAS  PubMed  Google Scholar 

  101. Datz FL (1996) Abdominal abscess detection: gallium, In-111 and Tc-99m labeled leukocytes and polyclonal and monoclonal antibodies. Semin Nucl Med 26:51–64

    Article  CAS  PubMed  Google Scholar 

  102. Minoja G, Chiaranda M, Fachinetti A, Raso M, Dominioni L, Torre D, De Palma D (1996) The clinical use of Tc-99m labeled WBC scintigraphy in clinically ill surgical and trauma patients with occult sepsis. Intensive Care Med 22:867–871

    Article  CAS  PubMed  Google Scholar 

  103. Yang MD, Jeng LB, Kao A, Lin CC, Lee CC (2003) C-reactive protein and gallium scintigraphy in patients after abdominal surgery. Hepato-Gastroenterology 50:354–356

    CAS  PubMed  Google Scholar 

  104. Vehling D, Neurath M, Siessmeier T, Schunk K, Bartenstein P (2000) FDG-PET, anti-granulocyte-scintigraphy and hydro-MRI in the determination of bowel wall inflammation in Crohn’s disease. In J Nucl Med 41:11P.

    Google Scholar 

  105. Siemon JK, Siegfried GF, Waxman AD (1978) The use of Ga-67 in pulmonary disorders. Semin Nucl Med 3:235–249

    Google Scholar 

  106. Gotthardt M, Bleeker-Rovers CP, Boerman OC, Oyen WJG (2010) Imaging of inflammation by PET. Conventional scintigraphy and other imaging techniques. J Nucl Med 51:1937–1949

    Article  PubMed  Google Scholar 

  107. Woolfenden JM, Corrasquillo JA, Larson SA, Simmons TJ, Masur H, Smith PD, Shelhamer JH, Ognibene FP (1987) Acquired immunodeficiency syndrome: Ga-67 citrate imaging. Radiology 162:383–387

    Article  CAS  PubMed  Google Scholar 

  108. Tuazon CU, Delaney MD, Simon GL, Witorsch P, Varma PM (1985) Utility of gallium-67 scintigraphy and bronchial washings in the diagnosis and treatment of Pneumocystis carinii pneumonia deficiency syndrome. Am Rev Resp Dis 132:1087–1092

    CAS  PubMed  Google Scholar 

  109. Moinuddin M, Rackett J (1986) Gallium scintigraphy in the detection of amiodarone lung toxicity. Am J Radiol 147:607–609

    CAS  Google Scholar 

  110. Coak PS, Datz FL, Disbro MA, Alazaraki N, Taylor A (1984) Pulmonary uptake in indium-111 leukocyte imaging: clinical significance in patients with suspected occult infections. Radiology 150:557–561

    Article  Google Scholar 

  111. Conway JJ (1988) Role of scintigraphy in urinary tract infection. Semin Nucl Med 18:308–319

    Article  CAS  PubMed  Google Scholar 

  112. Mackenzie JR (1996) A review of renal scarring in children. Nucl Med Comm 17:176–190

    Article  CAS  Google Scholar 

  113. El Hajjar M, Launay S, Hossein-Foucher C, Foulard M, Robert Y (2002) Power Doppler sonography and acute pyelonephritis in children: comparison with Tc-99m DMSA scintigraphy. Arch Pediatr 9:21–25

    PubMed  Google Scholar 

  114. The American Academy of Pediatrics, Subcommittee on Urinary Tract Infection, Steering Committee on Quality Improvement and Management (2011) Urinary tract infection: clinical practice guideline for the diagnosis and management of the initial UTI in febrile infants and children 2 to 24 months. Pediatrics 128:572–575, 112

    Google Scholar 

  115. La Scola C et al (2013) Different guidelines for imaging after first UTI in febrile infants: yield, cost, and radiation. Pediatrics 131:e665–e671

    Article  PubMed  Google Scholar 

  116. Federici L, Blondet C, Imperiale A et al (2010) Value of 18F-FDG-PET/CT in patients with fever of unknown origin and unexplained prolonged inflammatory syndrome: a single centre analysis experience. Int J Clin Pract 64(55–60):118

    Google Scholar 

  117. Spier BJ, Perlman SB, Jaskowiak CJ, Reichelderfer M (2010) PET/CT in the evaluation of inflammatory bowel disease: studies in patients before and after treatment. Mol Imaging Biol 12:85–88

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Elgazzar, A.H., Mohammed, A.M. (2022). Inflammation. In: Elgazzar, A.H. (eds) The Pathophysiologic Basis of Nuclear Medicine. Springer, Cham. https://doi.org/10.1007/978-3-030-96252-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-96252-4_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-96251-7

  • Online ISBN: 978-3-030-96252-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics