Skip to main content

Ionizing Radiation: Biologic Effects and Essential Cell Biology

  • Chapter
  • First Online:
The Pathophysiologic Basis of Nuclear Medicine

Abstract

This chapter deals with the effects of ionizing radiation with a foundation of relevant cell biology. Nuclear medicine was discovered and built on the principle and effects of ionizing radiation (IR) following its interaction with matter. IR is the process of ion pair formation resulting from the ejection of electrons from atoms and molecules. Atom ionization usually occurs after exposure to high temperatures, electrical discharges, or exposure to nuclear radiation. Nuclear IR is a consequence of nuclear decay to regain stability and is subdivided into uncharged and charged IR. Neutrons and γ-rays are, respectively, chargeless particles and electromagnetic radiation. Charged IR comprises charged particles like α-particles (helium nuclei, He2+ ion ejected from a nucleus), β-particles (fast electrons ejected from a nucleus), and β + particles (positrons). Both IR categories can induce severe damages in irradiated cells, tissues and organs, causing detrimental functional changes and eventually leading to cancer. It is thus essential to consider the assorted radiobiology in all diagnostic applications of radiation. Moreover, as ionizing radiation can also lead directly to cell death, it is also essential to consider all the radiobiological aspects of cell killing in all types of radiation therapy. At last psychological and cognitive effects are recognized and must be considered.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Raven PH, Johnson GB (1992) Biology, 3rd edn. Mosby-Year Book, St. Louis

    Google Scholar 

  2. Alberts B (2003) DNA replication and recombination. Nature 421(6921):431–435

    Article  PubMed  CAS  Google Scholar 

  3. Friedberg EC (2001) How nucleotide excision repair protects against cancer. Nat Rev Cancer 1:22–33

    Article  CAS  PubMed  Google Scholar 

  4. Khanna KK, Jackson SP (2001) DNA double-strand breaks: signaling, repair and the cancer connection. Nat Genet 27(3):247–254

    Article  CAS  PubMed  Google Scholar 

  5. Sancar A, Lindsey-Boltz L, Unsal-Kaçmaz K, Linn S (2004) Molecular mechanisms of mammalian DNA repair and the DNA damage checkpoints. Annu Rev Biochem 73:39–85

    Article  CAS  PubMed  Google Scholar 

  6. Lieberman HB (2008) DNA damage repair and response proteins as targets for cancer therapy. Curr Med Chem 15(4):360–367

    Article  CAS  PubMed  Google Scholar 

  7. Vilenchik MM, Knudson AG (2003) Endogenous DNA double-strand breaks: production, fidelity of repair, and induction of cancer. Proc Natl Acad Sci 100(22):12871–12876

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Thompson LH, Schild D (2001) Homologous recombinational repair of DNA ensures mammalian chromosome stability. Mutat Res 477(1–2):131–153

    Article  CAS  PubMed  Google Scholar 

  9. Jackson SP (2002) Sensing and repairing DNA double-strand breaks. Carcinogenesis 23(5):687–696

    Article  CAS  PubMed  Google Scholar 

  10. Powell SN, Kachnic LA (2003) Roles of BRCA1 and BRCA2 in homologous recombination, DNA replication fidelity and the cellular response to ionizing radiation. Oncogene 22(37):5784–5791

    Article  CAS  PubMed  Google Scholar 

  11. Rothkamm K, Krüger I, Thompson LH, Löbrich M (2003) Pathways of DNA double-strand break repair during the mammalian cell cycle. Mol Cell Biol 23(16):5706–5715

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Shibai A, Takahashi Y, Ishizawa Y, Motooka D, Nakamura S et al (2017) Mutation accumulation under UV radiation in Escherichia coli. Sci Rep 7(1):14531

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Harper JW, Elledge SJ (2007) The DNA damage response: ten years after. Mol Cell 28(5):739–745

    Article  CAS  PubMed  Google Scholar 

  14. Galluzzi L, Vitale I, Abrams JM, Alnemri ES, Baehrecke EH et al (2012) Molecular definitions of cell death subroutines: recommendations of the nomenclature committee on cell death 2012. Cell Death Differ 19(1):107–120

    Article  CAS  PubMed  Google Scholar 

  15. Neves AA, Brindle KM (2014) Imaging cell death. J Nucl Med 55(1):1–4

    Article  CAS  PubMed  Google Scholar 

  16. Steel GG (1996) From targets to genes: a brief history of radiosensitivity. Phys Med Biol 41(2):205–222

    Article  CAS  PubMed  Google Scholar 

  17. Morgan WF (2008) 44th Annual meeting of the National Committee on radiation protection and measurements. NCRP, Bethesda, MD

    Google Scholar 

  18. Pierce AJ, Stark JM, Araujo FD, Moynahan ME, Berwick M et al (2001) Double-strand breaks and tumorigenesis. Trends Cell Biol 11(11):S52–S59

    Article  CAS  PubMed  Google Scholar 

  19. Willers H, Dahm-Daphi J, Powell SN (2004) Repair of radiation damage to DNA. Br J Cancer 90(7):1297–1301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Da Costa PE (1990) Robbins’ pathologic basis of disease. R. S. Cotran, V. Kumar and S. L. Robbins. W. B. Saunders, Philadelphia, 1989. J Pathol 160(1):89–89

    Google Scholar 

  21. Ward JF (1988) DNA damage produced by ionizing radiation in mammalian cells: identities, mechanisms of formation, and reparability. In: Cohn WE, Moldave K (eds) Progress in nucleic acid research and molecular biology. Academic Press, San Diego, CA, pp 95–125

    Google Scholar 

  22. Bolus NE (2001) Basic review of radiation biology and terminology. J Nucl Med Technol 29(2):67–73. test 76-7

    CAS  PubMed  Google Scholar 

  23. Murphy JB, Liu JH, Sturm E (1922) Studies on x-ray effects: ix. The action of serum from x-rayed animals on lymphoid cells in vitro. J Exp Med 35(3):373–384

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Baskar R (2010) Emerging role of radiation induced bystander effects: cell communications and carcinogenesis. Genome Integr 1(1):13

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Prise KM, O'Sullivan JM (2009) Radiation-induced bystander signalling in cancer therapy. Nat Rev Cancer 9(5):351–360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Azzam EI, de Toledo SM, Little JB (2001) Direct evidence for the participation of gap junction-mediated intercellular communication in the transmission of damage signals from alpha-particle irradiated to nonirradiated cells. Proc Natl Acad Sci U S A 98:473–478

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Ramesh R, Marrogi AJ, Munshi A, Abboud CN, Freeman SM (1996) In vivo analysis of the ‘bystander effect’: a cytokine cascade. Exp Hematol 24(7):829–838

    CAS  PubMed  Google Scholar 

  28. Iyer R, Lehnert BE, Svensson R (2000) Factors underlying the cell growth-related bystander responses to α particles. Cancer Res 60:1290–1298

    CAS  PubMed  Google Scholar 

  29. Hall EJ, Hei TK (2003) Genomic instability and bystander effects induced by high-LET radiation. Oncogene 22(45):7034–7042

    Article  CAS  PubMed  Google Scholar 

  30. Morgan WF (2003) Non-targeted and delayed effects of exposure to ionizing radiation: II. Radiation-induced genomic instability and bystander effects in vivo, clastogenic factors and transgenerational effects. Radiat Res 159(5):581–596

    Article  CAS  PubMed  Google Scholar 

  31. Suzuki K, Ojima M, Kodama S, Watanabe M (2003) Radiation-induced DNA damage and delayed induced genomic instability. Oncogene 22:6988–6993

    Article  CAS  PubMed  Google Scholar 

  32. Huber MA, Terezhalmy GT (2003) The head and neck radiation oncology patient. Quintessence Int 34:693–717

    PubMed  Google Scholar 

  33. Kendall GM (2000) Second-event theory reviewed. J Radiol Prot 20:79–80

    Article  CAS  PubMed  Google Scholar 

  34. Bergonié J, Tribondeau L (2003) Interpretation of some results from radiotherapy and an attempt to determine a rational treatment technique. 1906. Yale J Biol Med 76:181–182

    PubMed  PubMed Central  Google Scholar 

  35. Dale RG, Wondergem J (2014) Nuclear medicine physics: a handbook for teachers and students. IAEA, Vienna. (ISBN 92-0-107304-6)

    Google Scholar 

  36. Ernst M, Freed ME, Zametkin AJ (1998) Health hazards of radiation exposure in the context of brain imaging research: special consideration for children. J Nucl Med 39(4):689–698

    CAS  PubMed  Google Scholar 

  37. Johansson L (2003) Hormesis: an update of the present position. Eur J Nucl Med Mol Imaging 30(6):921–933

    Article  PubMed  Google Scholar 

  38. Vaiserman A, Koliada A, Zabuga O, Socol Y (2018) Health impacts of low-dose ionizing radiation: current scientific debates and regulatory issues. Dose Response 16(3):1559325818796331

    Article  PubMed  PubMed Central  Google Scholar 

  39. Feinendegen LE (2005) Evidence for beneficial low level radiation effects and radiation hormesis. Br J Radiol 78(925):3–7

    Article  CAS  PubMed  Google Scholar 

  40. Kneale GW, Stewart AM (1976) Mantel-Haenszel analysis of Oxford data. II. Independent effects of fetal irradiation subfactors. J Natl Cancer Inst 57(5):1009–1014

    Article  CAS  PubMed  Google Scholar 

  41. Khamwan K, Krisanachinda A, Pasawang P (2010) The determination of patient dose from (18)F-FDG PET/CT examination. Radiat Prot Dosimetry 141(1):50–55

    Article  CAS  PubMed  Google Scholar 

  42. Brix G, Lechel U, Glatting G, Ziegler SL, Münzing W et al (2005) Radiation exposure of patients undergoing whole-body dual-modality 18F-FDG PET/CT examinations. J Nucl Med 46(4):608–613

    CAS  PubMed  Google Scholar 

  43. Cohen BL (1995) Test of the linear-no threshold theory of radiation carcinogenesis for inhaled radon decay products. Health Phys 68(2):157–174

    Article  CAS  PubMed  Google Scholar 

  44. High Background Radiation Research Group, China (1980) Health survey in high background radiation areas in China. Science 209(4459):877–880

    Article  Google Scholar 

  45. Nambi KS, Soman SD (1980) Environmental radiation and cancer in India. Health Phys 52(5):653–657

    Article  Google Scholar 

  46. Ghiassi-nejad M, Mortazavi SMJ, Cameron JR, Niroomand-rad A, Karam PA (2002) Very high background radiation areas of Ramsar, Iran: preliminary biological studies. Health Phys 82(1):87–93

    Article  CAS  PubMed  Google Scholar 

  47. Narasimhamurthy RK, Mumbrekar KD, Rao BSS (2022) Effects of low dose ionizing radiation on the brain—a functional, cellular, and molecular perspective. Toxicology 465:153030

    Article  CAS  PubMed  Google Scholar 

  48. Pasqual E, Boussin F, Bazyka D, Nordenskjold A, Yamada M et al (2021) Cognitive effects of low dose of ionizing radiation—lessons learned and research gaps from epidemiological and biological studies. Environ Int 147:106295

    Article  CAS  PubMed  Google Scholar 

  49. Collett G, Young WR, Martin W, Anderson RM (2021) Exposure worry: the psychological impact of perceived ionizing radiation exposure in British nuclear test veterans. Int J Environ Res Public Health 18:12188

    Article  PubMed  PubMed Central  Google Scholar 

  50. Garcia B (1994) Social-psychological dilemmas and coping of atomic veterans. Am J Orthopsychiatry 64:651–655

    Article  CAS  PubMed  Google Scholar 

  51. Vyner HM (1983) The psychological effects of ionizing radiation. Cult Med Psychiatry 7:241–261

    Article  CAS  PubMed  Google Scholar 

  52. UNSCEAR (2010) 2008 Report. Sources and effects of ionizing radiation. United Nations Scientific Committee on the Effects of Atomic Radiation, New York

    Google Scholar 

  53. Jagger J (1998) Natural background radiation and cancer death in Rocky Mountain states and Gulf Coast states. Health Phys 75(4):428–430

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maryam Al-Qabandi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Al-Qabandi, M., Alshammary, J. (2022). Ionizing Radiation: Biologic Effects and Essential Cell Biology. In: Elgazzar, A.H. (eds) The Pathophysiologic Basis of Nuclear Medicine. Springer, Cham. https://doi.org/10.1007/978-3-030-96252-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-96252-4_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-96251-7

  • Online ISBN: 978-3-030-96252-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics