Skip to main content

Basis of Therapeutic Nuclear Medicine

  • Chapter
  • First Online:
The Pathophysiologic Basis of Nuclear Medicine

Abstract

Therapeutic applications of nuclear medicine are expanding. Until 5–10 years ago, the use of radioisotopes in therapy was limited predominantly to treatment of hyperthyroidism, thyroid cancer, polycythemia rubra vera, bone metastases (palliative), liver tumor/metastases, neuroblastoma, pheochromocytoma, and paragangliomas. In recent years, Lu-177 and Y-90 labeled somatostatin analogs, Lu-177 labeled PSMA ligands, and Ra-223 dichloride treatments have been increasingly used.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Prvulovich EM, Stein RC, Bomanji JB et al (1998) Iodine-131 MIBG therapy of a patient with carcinoid liver metastases. J Nucl Med 39:1743–1745

    CAS  PubMed  Google Scholar 

  2. Demeter S, Leslie WD, Levin DP (2005) Radioactive iodine therapy for malignant and benign thyroid disease: a Canadian national survey of physician practice. Nucl Med Commun 26:613–621

    Article  PubMed  Google Scholar 

  3. McKenzie JM, Zakrija M, Sato A (1978) Humoral immunity in Graves’ disease. Clin Endocrinol Metab 7:31

    Article  CAS  PubMed  Google Scholar 

  4. Maxon HR, Thomas SR, Saenger EL et al (1977) Ionizing irradiation and induction of clinically significant disease in human thyroid. Am J Med 63:967

    Article  CAS  PubMed  Google Scholar 

  5. Sofa AM, Skillern PG (1975) Treatment of hyperthyroidism with a large initial dose of sodium iodide I-131. Arch Intern Med 135:673

    Article  Google Scholar 

  6. Woeber KA (2000) Update on the management of hyperthyroidism and hypothyroidism. Arch Intern Med 160:1067–1071

    Article  CAS  PubMed  Google Scholar 

  7. Hamburger JI (1980) Evaluation of toxicity in solitary nontoxic autonomously functioning thyroid nodules. J Clin Endocrinol Metab 50:1089–1093

    Article  CAS  PubMed  Google Scholar 

  8. Peter HJ, Studer H, Forster T, Herber H (1982) The pathogenesis of “hot” and “cold” follicle in multinodular goiters. J Clin Endocrinol Metab 55:941–946

    Article  CAS  PubMed  Google Scholar 

  9. Ginsberg J (2003) Diagnosis and management of Grave’s disease. CMAJ 168:575–585

    PubMed  PubMed Central  Google Scholar 

  10. Bartalena L, Marcocci C, Bogazzi F, Manetti L, Tanda ML, Dell’Unto E et al (1998) Relation between therapy for hyperthyroidism and the course of Grave’s ophthalmopathy. N Engl J Med 338:73–78

    Article  CAS  PubMed  Google Scholar 

  11. Reid JR, Wheeler SF (2005) Hyperthyroidism: diagnosis and treatment. Am Fam Physician 72:623–630

    PubMed  Google Scholar 

  12. Perros P, Kendall-taylor P, Neoh C, Frewin S, Dickinson J (2005) A prospective study of the effects of radioiodine therapy for hyperthyroidism in patients with minimally active Grave’s ophthalmopathy. J Clin Endocrinol Metab 90:5321–5532

    Article  CAS  PubMed  Google Scholar 

  13. Maxon HR, Thomas SR, Chen IW (1981) The role of nuclear medicine in the treatment of hyperthyroidism and well differentiated thyroid adenocarcinoma. Clin Nucl Med 6:87–98

    Article  Google Scholar 

  14. Sankar R, Sekhri T, Sripathy G, Walia RP, Jain SK (2005) Radioactive iodine therapy in Grave’s hyperthyroidism: a prospective study from a tertiary referral center in North India. J Assoc Physicians India 53:603–606

    CAS  PubMed  Google Scholar 

  15. Allahabadia A, Daykin J, Sheppard MC, Gough SC, Franklyn JA (2001) Radioiodine treatment of hyperthyroidism. Prognostic factors for outcome. J Clin Endocrinol Metab 86:3611–3617

    CAS  PubMed  Google Scholar 

  16. Haugen BR, Alexander EK, Bible KC, Doherty GM, Mandel SJ et al (2016) 2015 American Thyroid Association management guidelines for adult patients with thyroid nodules and differentiated thyroid cancer: the American Thyroid Association guidelines task force on thyroid nodules and differentiated thyroid cancer. Thyroid 26:1–13

    Article  PubMed  PubMed Central  Google Scholar 

  17. Terrier P, Sheng ZM, Schlumberger M et al (1988) Structure and expression of c-myc and c-fos proto-oncogenes in thyroid carcinomas. Oncogene 2:403

    Google Scholar 

  18. Lemoine NR, Mayall ES, Wyllie FS et al (1988) Activated ras oncogenes in human the thyroid cancers. Cancer Res 48:44–59

    Google Scholar 

  19. Atay-Rosenthal S (1999) Controversies on treatment of well-differentiated thyroid carcinoma and factors influencing prognosis. In: Freeman L (ed) Nuclear medicine annual. Lippincott/Williams and Wilkins, Philadelphia, pp 303–334

    Google Scholar 

  20. Beierwaltes WH (1978) The treatment of thyroid carcinoma with radioiodine. Semin Nucl Med 8:79

    Article  CAS  PubMed  Google Scholar 

  21. Rosario PW, Barroso AL, Rezende LI, Padrao EL, Fagundes TA, Reis JS, Purisch S (2005) Outcome of ablation of thyroid remnants with 100 mCi (3.7 GBq) iodine -131 in patients with thyroid cancer. Ann Nucl Med 19:247–250

    Article  PubMed  Google Scholar 

  22. Kolfuerest S, Igerc I, Lind P (2005) Recombinant human thyrotropin is helpful in the follow up and I-131 therapy of patients with thyroid cancer: a report of the results and benefits using recombinant thyrotropin in clinical routine. Thyroid 15:371–376

    Article  Google Scholar 

  23. Intenzo CM, Jabbour S, Dam HQ, Capuzzi DM (2005) Changing concepts in the management of differentiated thyroid cancer. Semin Nucl Med 35:257–265

    Article  PubMed  Google Scholar 

  24. Fujie S, Okumura Y, Sato S, Akaki S, Katsui K, Himei K, Takemoto M, Kanazawa S (2005) Diagnostic capabilities of I-131, Tl-201, and Tc99m MIBI scintigraphy for metastatic differentiated thyroid carcinoma after total thyroidectomy. Acta Med Okayama 59:99–107

    PubMed  Google Scholar 

  25. Ferreira SH, Lorenzethi BB, Bristow AF et al (1988) Interleukin-1 beta as a potent hyperalgesic agent antagonized by a tripeptide analogue. Nature 334:698–700

    Article  CAS  PubMed  Google Scholar 

  26. Poulson HS, Nielsen OS, Klee M et al (1989) Palliative irradiation of bone metastases. Cancer Treat Rev 16:41–48

    Article  Google Scholar 

  27. Tong D, Gillick L, Hendrickson FR (1982) Palliation of symptomatic osseous metastases. Cancer 50:893–899

    Article  CAS  PubMed  Google Scholar 

  28. Salazar OM, Rubin P, Hendrickson FR et al (1986) Single-dose half-body irradiation for palliation of multiple bone metastases from solid tumors. Final Radiation Therapy Oncology Group report. Cancer 58:29–36

    Article  CAS  PubMed  Google Scholar 

  29. Bauman G, Charette M, Reid R, Sathya J (2005) Radiopharmaceuticals for the palliation of painful bone metastasis-a systemic review. Radiother Oncol 75:258–270

    Article  CAS  PubMed  Google Scholar 

  30. Pauwels EKJ, Stokkel MPM (2001) Radiopharmaceuticals for bone lesions imaging and therapy in clinical practice. Q J Nucl Med 45:18–26

    CAS  PubMed  Google Scholar 

  31. Giammarile F, Mognetti T, Resche I (2001) Bone pain palliation with strontium-89 in cancer patients with bone metastases. Q J Nucl Med 45:78–83

    CAS  PubMed  Google Scholar 

  32. Patel BR, Flowers WM Jr (1997) Systemic radionuclide therapy with strontium chloride Sr 89 for painful skeletal metastases in prostate and breast cancer. South Med J 90:506–508

    Article  CAS  PubMed  Google Scholar 

  33. Papatheofanis FJ (2000) Decreased serum E-selectin concentration after 89Sr-chloride therapy for metastatic prostate cancer bone pain. J Nucl Med 41:1021–1024

    CAS  PubMed  Google Scholar 

  34. Ramamoorthy N, Saraswathy P, Das MK, Mehra KS, Ananthakrishnan M (2002) Production logistics and radionuclidic purity aspects of 153Sm for radionuclide therapy. Nucl Med Commun 23:83–89

    Article  CAS  PubMed  Google Scholar 

  35. Cameron PJ, Klemp PF, Martindale AA, Turner JH (1999) Prospective 153Sm-EDTMP therapy dosimetry by whole-body scintigraphy. Nucl Med Commun 20:609–615

    Article  CAS  PubMed  Google Scholar 

  36. Maxon HR, Thomas S, Hertzberg VS, Schroder LE, Englaro EE, Samaratunga R et al (1992) Rhenium-186 hydroxyethylidene diphosphonate for the treatment of painful osseous metastases. Semin Nucl Med 22:33–40

    Article  PubMed  Google Scholar 

  37. Han SH, De Klerk JM, Zonnenberg BA, Tan S, Van Rijk PP (2001) 186Re-etidronate. Efficacy of palliative radionuclide therapy for painful bone metastases. Q J Nucl Med 45:84–90

    CAS  PubMed  Google Scholar 

  38. Kucuk NO, Ibis E, Aras G, Baltaci S, Ozalp G, Beduk Y, Canakci N, Soylu A (2000) Palliative analgesic effect of Re-186 HEDP in various cancer patients with bone metastases. Ann Nucl Med 14:239–245

    Article  CAS  PubMed  Google Scholar 

  39. Atkins HL, Mausner LF, Srivastava SC, Meinken GE, Cabahug CJ, D’Alessandro T (1995) Tin-117 m (4+)-DTPA for palliation of pain from osseous metastases: a pilot study. J Nucl Med 36:725–929

    CAS  PubMed  Google Scholar 

  40. Atkins HL, Mausner LF, Srivastava SC, Meinken GE, Straub RF, Cabahug CJ et al (1993) Biodistribution of Sn-117 m DTPA for palliative therapy of painful osseous metastases. Radiology 186:279–283

    Article  CAS  PubMed  Google Scholar 

  41. Bishayee A, Rao DV, Srivastava SC, Bouchet LG, Bolch WE, Howell RW (2000) Marrow-sparing effects of 117mSndiethylenetriaminepentaacetic acid for radionuclide therapy of bone cancer. J Nucl Med 41:2043–2050

    CAS  PubMed  Google Scholar 

  42. Blower PJ, Kettle AG, O’Doherty MJ, Coakley AJ, Knapp FF Jr (2000) 99mTc(V)DMSA quantitatively predicts 188Re(V)DMSA distribution in patients with prostate cancer metastatic to bone. Eur J Nucl Med 27:1405–1409

    Article  CAS  PubMed  Google Scholar 

  43. Krishnamurthy GT, Krishnamurthy S (2000) Radionuclides for metastatic bone pain palliation: a need for rational re-evaluation in the new millennium [comment]. J Nucl Med 41:688–691

    CAS  PubMed  Google Scholar 

  44. Hoskin PJ, Ford HT, Harmer CL (1989) Hemibody irradiation (HBI) for metastatic bone pain in two histologically distinct groups of patients. Clin Oncol 1:67–69

    Article  CAS  Google Scholar 

  45. Fischer M (1998) I-131 therapy of neural crest tumors. Nucl Med Newslett 5:9–10

    Google Scholar 

  46. Quilty PM, Kirk D, Bolger JJ et al (1994) A comparison of the palliative effects of strontium-89 and external beam radiotherapy in metastatic prostate cancer. Radiother Oncol 31:33–40

    Article  CAS  PubMed  Google Scholar 

  47. Silberstein EB, Elgazzar AH, Kapilivsky A (1992) Phosphorus-32 radiopharmaceuticals for the treatment of painful osseous metastases. Semin Nucl Med 17:17–27

    Article  Google Scholar 

  48. Maxon HR, Thomas SR, Hertzberg VS et al (1982) Rhenium-186 hydroxyethylidene diphosphonate for the treatment of painful osseous metastases. Semin Nucl Med 22:30–40

    Google Scholar 

  49. Elgazzar AH, Maxon HR (1993) Radioisotope therapy for cancer related bone pain. Imaging Insights 2:1–6

    Google Scholar 

  50. Windsor PM (2001) Predictors of response to strontium-89 (Metastron) in skeletal metastases from prostate cancer: report of a single centre’s 10-year experience. Clin Oncol 13:219–227

    CAS  Google Scholar 

  51. Sideras PA, Stavraka A, Gouliamos A, Limouris GS (2013) Radionuclide therapy of painful bone metastases – a comparative study between consecutive radionuclide infusions, combination with chemotherapy, and radionuclide infusions alone: an in vivo comparison of their effectiveness. Am J Hosp Palliat Care 30:745–751

    Article  PubMed  Google Scholar 

  52. Dickie GJ, MacFarlane D (1999) Strontium and samarium therapy for bone metastases from prostate carcinoma. Australas Radiol 43:476–479

    Article  CAS  PubMed  Google Scholar 

  53. Sciuto R, Festa A, Pasqualoni R, Semprebene A, Rea S, Bergomi S, Maini CL (2001) Metastatic bone pain palliation with 89-Sr and 186-Re-HEDP in breast cancer patients. Breast Cancer Res Treat 66:101–109

    Article  CAS  PubMed  Google Scholar 

  54. Kvinnsland Y, Skretting A, Bruland OS (2001) Radionuclide therapy with bone- seeking compounds: Monte Carlo calculations of dose-volume histograms for bone marrow in trabecular bone. Phys Med Biol 46:1149–1161

    Article  CAS  PubMed  Google Scholar 

  55. Spetz J, Dalmo J, Nilsson O, Wängberg B, Ahlman H, Forssell-Aronsson E (2012) Specific binding and uptake of 131I-MIBG and 111In-octreotide in metastatic paraganglioma–tools for choice of radionuclide therapy. Horm Metab Res 44:400–404

    Article  CAS  PubMed  Google Scholar 

  56. Bomanji JB, Papathanasiou ND (2012) 111In-DTPA0-octreotide (Octreoscan), 131I-MIBG and other agents for radionuclide therapy of NETs. Eur J Nucl Med Mol Imaging 39(1):S113–S125

    Article  PubMed  CAS  Google Scholar 

  57. Zaknun JJ, Bodei L, Mueller-Brand J, Pavel ME, Baum RP, Hörsch D, O’Dorisio MS, O’Dorisiol TM, Howe JR, Cremonesi M, Kwekkeboom DJ (2013) The joint IAEA, EANM, and SNMMI practical guidance on peptide receptor radionuclide therapy (PRRNT) in neuroendocrine tumours. Eur J Nucl Med Mol Imaging 40:800–816E

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Gelfand MJ, Elgazzar AH, Kriss VM et al (1994) Iodine-123 MIBG SPECT versus planar imaging in children with neural crest tumors. J Nucl Med 35:1753–1757

    CAS  PubMed  Google Scholar 

  59. Paltiel HJ, Gelfand MJ, Elgazzar AH, Washburn LC et al (1994) Neural crest tumors: I-123 MIBG imaging. Radiology 190:117–121

    Article  CAS  PubMed  Google Scholar 

  60. Hoefnagel CA, deKraner J, Voute PA, Valdes Olmos RA (1991) Preoperative I-131 MIBG therapy in the management of neuroblastoma (abstract). J Nucl Med 32:921

    Google Scholar 

  61. Hoefnagel CA, deKraner J, Valdes Olmos RA, Voute PA (1994) I-131 MIBG as a first time treatment in high risk neuroblastoma patients. J Nucl Med 15:712–717

    CAS  Google Scholar 

  62. Mastrangelo R, Lasorell A, Troncone L et al (1991) I-131 metaiodobenzylguanidine in neuroblastoma patients. J Nucl Med 35:248–251

    Google Scholar 

  63. Sisson JC, Shapiro B, Beirwaltes WH et al (1984) Radiopharmaceutical treatment of malignant pheochromocytoma. J Nucl Med 25:197–206

    CAS  PubMed  Google Scholar 

  64. Hoefnagel CA (1991) Radionuclide therapy revisited. Eur J Nucl Med 18:408–431

    Article  CAS  PubMed  Google Scholar 

  65. Taal BG, Hoefnagel CA, Vables Olmos RA, Boot H, Beijen JK (1996) Palliative effect of metaiodobenzylguanidine in metastatic carcinoid tumors. J Clin Oncol 14:1829–1839

    Article  CAS  PubMed  Google Scholar 

  66. Press OW, Eary JF, Applelbaum FR, Martin PJ, Badger CC, Nelp WB, Glenn S, Buchko GM, Fisher LD, Porter B et al (1993) Radiolabeled-antibody therapy of B-cell lymphoma with autologous bone marrow support. N Engl J Med 329:1219–1224

    Article  CAS  PubMed  Google Scholar 

  67. Press OW, Eary JF, Applbaum FR, Martin PJ, Nelp WB, Glenn S, Fisher DR et al (1995) Phase II trial of I-131-B1 (anti-CD20) antibody therapy with autologous stem cell transplantation for relapsed B cell lymphomas. Lancet 346:336–340

    Article  CAS  PubMed  Google Scholar 

  68. De Nardo GL, De Nardo SJ, O’Grady LF, Levy NB, Adams GP, Mills SL (1990) Fractionated radioimmunotherapy of B-cell malignancies with I-131-Lym-1. Cancer Res 50:1014–1016

    Google Scholar 

  69. DeNardo GL, O’Donnell RT, Oldham RK, DeNardo SJ (1998) A revolution in the treatment of non-Hodgkin’s lymphoma. Cancer Biother Radiopharm 13:213–223

    Article  CAS  PubMed  Google Scholar 

  70. Morschhauser F, Radford J, Van Hoof A et al (2013) 90Yttrium-Ibritumomab Tiuxetan consolidation of first remission in advanced-stage follicular non-Hodgkin lymphoma: updated results after a median follow-up of 7.3 years from the international, randomized, phase III first-line indolent trial. J Clin Oncol 31:1977–1983

    Article  CAS  PubMed  Google Scholar 

  71. Deutsch E, Brodack JW, Deutsch KF (1993) Radiation synovectomy revisited. Eur J Nucl Med 20:1113–1127

    Article  CAS  PubMed  Google Scholar 

  72. Gschwend N (1989) Synovectomy. In: Kelly WN, Harris ED, Ruddy S et al (eds) Textbook of rheumatology. Saunders, Philadelphia, pp 1934–1961

    Google Scholar 

  73. Heim M, Goshen E, Amit Y, Martinowitz U (2001) Synoviorthesis with radioactive Yttrium in haemophilia: Israel experience. Haemophilia 7(Suppl 2):36–39

    Article  PubMed  Google Scholar 

  74. Rodriguez-Merchan EC, Jimenez-Yuste V, Villar A, Quintana M, Lopez-Cabarcos C, Hernandez-Navarro F (2001) Yttrium-90 synoviorthesis for chronic haemophilic synovitis: Madrid experience. Haemophilia 7(Suppl 2):34–35

    Article  PubMed  Google Scholar 

  75. Onetti CM, Guyierrez F, Hiba E et al (1982) Synoviorthesis with P-32 colloid chromic phosphate in rheumatoid arthritis and hemophilia, clinical, histopathological and arthographic changes. J Rheumatol 9:229–238

    CAS  PubMed  Google Scholar 

  76. Rivard GE, Givard M, Belanger R et al (1994) Synoviorthesis with colloidal P-32 chromic phosphate for the treatment of hemophilic arthropathy. J Bone Joint Surg Am 76:482–487

    Article  CAS  PubMed  Google Scholar 

  77. Jeong JM, Lee YJ, Kim YJ, Chang YS, Lee DS, Chung JK, Song YW, Lee MC (2000) Preparation of rhenium-188-tin colloid as a radiation synovectomy agent and comparison with rhenium-188-sulfur colloid. Appl Radiat Isot 52:851–855

    Article  CAS  PubMed  Google Scholar 

  78. Siegel ME, Siegel HJ, Luck JV Jr (1997) Radiosynovectomy’s clinical applications and cost effectiveness: a review. Semin Nucl Med 28:364–371

    Article  Google Scholar 

  79. Ofluoglu S, Schwameis E, Zehetagruber I, Havlic E, Wanivenhaus A, Schweeger I, Weiss K et al (2002) Radiation synovectomy with Ho-166-Ferric hydroxide: a first experience. J Nucl Med 43:1489–1494

    CAS  PubMed  Google Scholar 

  80. Fischer M, Modder G (2002) Radionuclide therapy of inflammatory joint disease. Nucl Med Commun 23:829–831

    Article  PubMed  Google Scholar 

  81. Hauss F (1992) Radiosynoviorthese in der orthopadie. Aktule Rheumatol 17:64–66

    Article  Google Scholar 

  82. Asavatanabodee P et al (1997) Yttrium-90 radiochemical synovectomy in chronic knee synovitis: a one year retrospective review of 133 treatment interventions. J Rheumatol 24:639–642

    CAS  PubMed  Google Scholar 

  83. Kresnik E, Mikososch P, Gallowitsch HJ, Jesenko R, Just H, Kogler D, Gasser J, Heinisch M, Unterweger O, Kumnig G, Gomez I, Lind P (2002) Clinical outcome of radiosynoviorthesis: a meta-analysis including 2190 treated joints. Nucl Med Commun 23:683–688

    Article  CAS  PubMed  Google Scholar 

  84. Sundram FX, Jiomg JM, Zanzonico P, Bernal P, Chau T, Onkhuudai P, Divgi C, Knapp FF Jr, Padhy AK (2002) Trans-arterial rhenium-188 lipiodol in the treatment of inoperable hepatocellular carcinoma – results of a multi-centre phase-1 study. World J Nucl Med 1:5–11

    Google Scholar 

  85. Uccelli L, Pasquali M, Boschi A, Giganti M, Duatti A (2011) Automated preparation of Re-188 lipiodol for the treatment of hepatocellular carcinoma. Nucl Med Biol 38:207–213

    Article  CAS  PubMed  Google Scholar 

  86. Nijsen JF, van het Schip AD, Hennink WE, Rook DW, van Rijk PP, deKlerk JM (2002) Advances in nuclear oncology: microspheres for internal radionuclide therapy of liver tumours. Curr Med Chem 9:73–82

    Article  CAS  PubMed  Google Scholar 

  87. Van de Wiele C, Maes A, Brugman E, D’Asseler Y, De Spiegeleer B, Mees G, Stellamans K (2012) SIRT of liver metastases: physiological and pathophysiological considerations. Eur J Nucl Med Mol Imaging 39(10):1646–1655

    Article  CAS  PubMed  Google Scholar 

  88. Jong M, Kwekkeboom D, Volkema R, Krenning ER (2003) Radiolabelled peptides for tumor therapy: current status and future directions. Eur J Nucl Med 30:463–469

    Article  CAS  Google Scholar 

  89. Rindi G (2010) The ENETS guidelines: the new TNM classification system. Tumori 96:806–809

    Article  PubMed  Google Scholar 

  90. Gulenchyn KY, Yaoy X, Asa SL, Singh S, Lawjj C (2012) Radionuclide therapy in neuroendocrine tumours: a systematic review. Clin Oncol 24:294–308

    Article  CAS  Google Scholar 

  91. Sansovini M, Severi S, Ambrosetti A, Monti M, Nanni O et al (2013) Treatment with the radiolabelled somatostatin analog 177Lu-DOTATATE for advanced pancreatic neuroendocrine tumors. Neuroendocrinology 97:347–354

    Article  CAS  PubMed  Google Scholar 

  92. Pfeifer AK, Gregersen T, Grønbæk H, Hansen CP, Müller-Brand J et al (2011) Peptide receptor radionuclide therapy with 90 Y-DOTATOC and 177 Lu-DOTATOC in advanced neuroendocrine tumors: results from a Danish cohort treated in Switzerland. Neuroendocrinology 93:189–196

    Article  CAS  PubMed  Google Scholar 

  93. Kwekkeboom DJ, Krenning EP, Lebtahi R et al (2009) ENETS consensus guidelines for the standards of care in neuroendocrine tumours: peptide receptor radionuclide therapy with radiolabeled somatostatin analogs. Neuroendocrinology 90:220–226

    Article  CAS  PubMed  Google Scholar 

  94. Seregni E, Maccauro M, Chiesa C, Mariani L, Pascali C, Mazzaferro V, De Braud F, Buzzoni R, Milione M, Lorenzoni A, Bogni A, Coliva A, Vullo SL, Bombardieri E (2014) Treatment with tandem [90Y]DOTA-TATE and [ 177Lu]DOTA-TATE of neuroendocrine tumours refractory to conventional therapy. Eur J Nucl Med Mol Imaging 41:223–230

    Article  CAS  PubMed  Google Scholar 

  95. Bruland OS, Skretting A, Solheim OP, Aas M (1996) Targeted radiotherapy of osteosarcoma using 153 Sm-EDTMP. A new promising approach. Acta Oncol 35:381–384

    Article  CAS  PubMed  Google Scholar 

  96. Franzius C, Bielack S, Sciuk J, Vollet B, Jurgens H, Schober O (1999) High-activity samarium-153-EDTMP therapy in unresectable osteosarcoma. Nucl Med 38:337–340

    CAS  Google Scholar 

  97. Aas M, Moe L, Gamlem H, Skretting A, Ottesen N, Bruland OS (1999) Internal radionuclide therapy of primary osteosarcoma in dogs, using 153Sm-ethylene-diamino-tetramethylene-phosphonate (EDTMP). Clin Cancer Res 5(10 Suppl):3148s–3152s

    CAS  PubMed  Google Scholar 

  98. Boyouth Je Macey DJ, Kasi LP et al (1995) Pharmacokinetics, dosimetry and toxicity of holmium-166 DOTMP for bone marrow ablation multiple myeloma. J Nucl Med 36:730–737

    Google Scholar 

  99. Rajendran JG, Eary JF, Bensinger W, Durack LD, Vernon C, Fritzberg A (2002) High-dose 166Ho-DOTMP in myeloablative treatment of multiple myeloma: pharmacokinetics, biodistribution, and absorbed dose estimation. J Nucl Med 43:1383–1390

    CAS  PubMed  Google Scholar 

  100. Alexanan R, Dimopoulos M (1994) The treatment of multiple myeloma. N Engl J Med 330:484–489

    Article  Google Scholar 

  101. Barlogie B, Alexanian R, Dick KA et al (1987) High dose chemotherapy and autologous bone marrow transplantation for resistant myeloma. Blood 70:869–872

    Article  CAS  PubMed  Google Scholar 

  102. Hoefnagel CA (1988) Radionuclide cancer therapy. Ann Nucl Med 12:61–70

    Article  Google Scholar 

  103. Srivastava S, Dadachova E (2001) Recent advances in radionuclide therapy. Semin Nucl Med 31:330–341

    Article  CAS  PubMed  Google Scholar 

  104. Geldof AA, van den Tillaar PL, Newling DW, Teule GJ (1997) Radionuclide therapy for prostate cancer lumbar metastasis prolongs symptom-free survival in a rat model. Urology 49:795–801

    Article  CAS  PubMed  Google Scholar 

  105. Logothetis C, Tu SM, Navone M (2003) Targeting prostate cancer bone metastases. Cancer 97:785–788

    Article  PubMed  Google Scholar 

  106. Yu EY, Muzi M, Hackenbracht JA et al (2011) C11-acetate and F-18 FDG PET for men with prostate cancer bone metastases: relative findings and response to therapy. Clin Nucl Med 36:192–198

    Article  PubMed  PubMed Central  Google Scholar 

  107. Jadvar H (2013) Imaging evaluation of prostate cancer with 18 F- fluorodeoxyglucose PET/CT: utility and limitations. Eur J Nucl Med Mol Imaging 40(Suppl 1):S5–S10

    Article  PubMed  CAS  Google Scholar 

  108. Meirelles GS, Schoder H, Ravizzini GC et al (2010) Prognostic value of baseline [18F] fluorodeoxyglucose positron emission tomography and 99mTc-MDP bone scan in progressing metastatic prostate cancer. Clin Cancer Res 16:6093–6099

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Poeppel TD, Handkiewicz-Junak D, Andreeff M, Becherer A, Bockisch A et al (2018) EANM guideline for radionuclide therapy with radium-223 of metastatic castration-resistant prostate cancer. Eur J Nucl Med Mol Imaging 45:824–845

    Article  CAS  PubMed  Google Scholar 

  110. Sartor O, Hoskin P, Coleman RE, Nilsson S, Vogelzang NJ et al (2016) Chemotherapy following radium-223dichloride treatment in ALSYMPCA. Prostate 76:905–916

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Hoskin P, Sartor O, O'Sullivan JM, Johannessen DC, Helle SI, Logue J et al (2014) Efficacy and safety of radium-223 dichloride inpatients with castration-resistant prostate cancer and symptomaticbone metastases, with or without previous docetaxel use: prespecified subgroup analysis from the randomised, double-blind, phase 3 ALSYMPCA trial. Lancet Oncol 15:1397–1406

    Article  CAS  PubMed  Google Scholar 

  112. Sartor O, Coleman RE, Nilsson S, Heinrich D, Helle SI, O’Sullivan JM et al (2017) An exploratory analysis of alkaline phosphatase, lactate dehydrogenase, and prostate-specific antigen dynamics in the phase 3 ALSYMPCA trial with radium-223. Ann Oncol 2017(28):1090–1097

    Article  Google Scholar 

  113. Kratochwil C, Fendler WP, Eiber M, Baum R, Bozkurt MF et al (2019) EANM procedure guidelines for radionuclide therapy with 177Lu-labelled PSMA-ligands (177Lu-PSMA-RLT). Eur J Nucl Med Mol Imaging 46:2536–2544

    Article  PubMed  Google Scholar 

  114. Baum RP, Kulkarni HR, Schuchardt C et al (2016) 177Lu-labeled prostate-specific membrane antigen radioligand therapy of metastatic castration-resistant prostate cancer: Safety and efficacy. J Nucl Med 57:1006–1013

    Article  CAS  PubMed  Google Scholar 

  115. Oudard S (2011) Phase III trial of cabazitaxel for the treatment of metastatic castration-resistant prostate cancer. Future Oncol 7:497–506

    Article  CAS  PubMed  Google Scholar 

  116. Valdes Olmos RA, Hoefnagel CA (2004) Radionuclide therapy in oncology: the drawing of its concomitant use with other modalities? Eur J Nucl Med Mol Imaging 31:929–931

    PubMed  Google Scholar 

  117. Bodey RK, Flux GD, Evans PM (2003) Combining dosimetry for targeted radionuclide and external beam therapies using the biologically effective dose. Cancer Biother Radiopharam 18:89–97

    CAS  Google Scholar 

  118. Logothetis C, Tu S, Navone N (2003) Targeting prostate cancer bone metastases. Cancer 07:758–788

    Google Scholar 

  119. Sciuto R, Festa A, Rea S et al (2002) Effects of low dose cisplatin on Sr-89 therapy for painful bone metastases from prostate cancer: a randomized clinical trial. J Nucl Med 43:79–86

    CAS  PubMed  Google Scholar 

  120. Horning SJ (2003) Future directions in radioimmunotherapy for B-cell lymphoma. Semin Oncol 30(17):29–34

    Article  CAS  PubMed  Google Scholar 

  121. Press OW, Unger JM, Braziel RM et al (2003) A phase 2 trial of CHOP chemotherapy followed by tositumomab/iodine I-131 tositumomab for previously untreated non Hodgkin’s lymphoma: Southwest Oncology Group Protocol S9911. Blood 102:1606–1612

    Article  CAS  PubMed  Google Scholar 

  122. Mastrangelo S, Tornesello A, Diociaiuti L et al (2001) treatment of advanced neuroblastoma; feasibility and therapeutic potential chemotherapeutic potential of a novel approach combining I-131-MIBG and multiple drug chemotherapy. Br J Cancer 84:460–464

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Yanik GA, Levine JE, Matthay KK et al (2002) Pilot study of iodine-131-metaiodobenzylguanidine in combination with myeloablative chemotherapy and autologous stem-cell support for the treatment of neuroblastoma. J Clin Oncol 20:2142–2149

    Article  CAS  PubMed  Google Scholar 

  124. Grana C, Chinol M, Robertson C et al (2002) Pretargeted adjunct radioimmunotherapy with yttrium-90-biotin in malignant glioma patients: a pilot study. Br J Cancer 86:207–212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Bodey RK, Evans PM, Flux GD (2005) Targeted radionuclide therapy. Spatial aspects of combined modality radiotherapy. Radiother Oncol 77:301–309

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Elgazzar, A.H., Sarikaya, I. (2022). Basis of Therapeutic Nuclear Medicine. In: Elgazzar, A.H. (eds) The Pathophysiologic Basis of Nuclear Medicine. Springer, Cham. https://doi.org/10.1007/978-3-030-96252-4_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-96252-4_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-96251-7

  • Online ISBN: 978-3-030-96252-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics