Santoyo-Castelazo, E., Azapagic, A.: Sustainability assessment of energy systems: integrating environmental, economic and social aspects. J. Clean. Prod. 80, 119–138 (2014). https://doi.org/10.1016/j.jclepro.2014.05.061
CrossRef
Google Scholar
Rokani, V., Kaminaris, S.D.: Power transformers fault diagnosis using AI techniques. Presented at the Technologies and Materials for Renewable Energy, Environment and Sustainability: TMREES20, Athens, Greece (2020). https://doi.org/10.1063/5.0032820
Memala, W.A., Bhuvaneswari, C., Mana, S.C., Selvan, M.P., Maniraj, M., Kishore, S.: An approach to remote condition monitoring of electrical machines based on IOT. J. Phys. Conf. Ser. 1770, 012023 (2021). https://doi.org/10.1088/1742-6596/1770/1/012023
Bustamante, S., Manana, M., Arroyo, A., Castro, P., Laso, A., Martinez, R.: Dissolved gas analysis equipment for online monitoring of transformer oil: a review. Sensors 19, 4057 (2019). https://doi.org/10.3390/s19194057
CrossRef
Google Scholar
IEC 60599:2015. Mineral oil-filled electrical equipment in service. Guidance on the interpretation of dissolved and free gases analysis
Google Scholar
C57.104-2019 - IEEE Guide for the Interpretation of Gases Generated in Mineral Oil-Immersed Transformers
Google Scholar
Sahoo, S., Chowdary, K.V.V.S.R., Das, S.: DGA and AI technique for fault diagnosis in distribution transformer. In: Sherpa, K.S., Bhoi, A.K., Kalam, A., Mishra, M.K. (eds.) ETAEERE 2020. LNEE, vol. 691, pp. 35–46. Springer, Singapore (2021). https://doi.org/10.1007/978-981-15-7511-2_4
CrossRef
Google Scholar
Yin, J., Zhu, Y., Yu, G.: Power transformer fault diagnosis based on support vector machine with cross validation and genetic algorithm. In: 2011 International Conference on Advanced Power System Automation and Protection, pp. 309–313. IEEE, Beijing (2011). https://doi.org/10.1109/APAP.2011.6180419
Mehta, A.K., Sharma, R.N., Chauhan, S., Saho, S.: Transformer diagnostics under dissolved gas analysis using Support Vector Machine. In: 2013 International Conference on Power, Energy and Control (ICPEC), pp. 181–186. IEEE, Sri Rangalatchum Dindigul (2013). https://doi.org/10.1109/ICPEC.2013.6527647
Hartono, Muharni, Y., Adipura, C., Martiningsih, W., Otong, M., Irvan, M.: Analysis of power transformator conditions using DGA method using artificial neural network in Krakatau electrical power company. Int. J. Eng. Technol. Manag. Res. 7, 77–88 (2020). https://doi.org/10.29121/ijetmr.v7.i6.2020.572
Chernov, A.V., Butakova, M.A., Vereskun, V.D., Kartashov, O.O.: Mobile smart objects for incidents analysis in railway intelligent control system. In: Abraham, A., Kovalev, S., Tarassov, V., Snasel, V., Vasileva, M., Sukhanov, A. (eds.) IITI 2017. AISC, vol. 680, pp. 128–137. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-68324-9_14
CrossRef
Google Scholar
Chernov, A., Butakova, M., Kostyukov, A.: Intelligent decision support for power grids using deep learning on small datasets. In: 2020 2nd International Conference on Control Systems, Mathematical Modeling, Automation and Energy Efficiency (SUMMA), pp. 958–962. IEEE, Lipetsk (2020). https://doi.org/10.1109/SUMMA50634.2020.9280654