Skip to main content

Computerized Tomography Images Processing Using Artificial Intelligence Techniques

  • 92 Accesses

Part of the Lecture Notes in Networks and Systems book series (LNNS,volume 405)

Abstract

The study and analysis of images have been increased with time due to the extraction of different features. This research area is leadership by Image Processing because it contributes with interesting techniques and many advances. There are several applications in image processing, such as medicine, agriculture, sports, and object recognition. In medicine, images reveal their importance to improve the processes to treat patients. It also helps the doctors to make better diagnostic. Besides, the environment of medical images is vast and includes x-ray, magnetic resonance, and computerized tomography images. However, the usage of CT images needs much medical staff to detect the organ with disease or with any problem. Thus, it is necessary to apply segmentation methods to improve diagnostics or disease detection. Methods that involve image segmentation require an in-depth study of traditional and non-traditional methods. In that sense, Artificial Intelligence (AI) methods are crucial in the studies of CT image segmentation due to those methods automated all of the processes. The majority contributions of AI are the novel methods from its subfields of Deep Learning and Neural Networks. They facilitate the processes through the usage of algorithms with learning and prediction. It is essential to mention that Image processing techniques need to work with AI techniques to solve segmentation problems and improve the precision of the results. Therefore this paper aims to present state-of-the-art image segmentation using Computed Tomography images.

Keywords

  • Images processing
  • Artificial intelligence
  • State-of-the-art

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-96043-8_16
  • Chapter length: 14 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   189.00
Price excludes VAT (USA)
  • ISBN: 978-3-030-96043-8
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   249.99
Price excludes VAT (USA)
Fig. 1.
Fig. 2.
Fig. 3.

Notes

  1. 1.

    https://www.dicomstandard.org [last access April 17, 2021].

References

  1. Abraham, A.: Artificial neural networks. In: Handbook of Measuring System Design (2005). https://doi.org/10.1002/0471497398.mm421

  2. Albawi, S., Mohammed, T.A.M., Alzawi, S.: Understanding of a convolutional neural network. IEEE (2017)

    Google Scholar 

  3. Chen, L., Wang, S., Fan, W., Sun, J., Satoshi, N.: Deep learning based language and orientation recognition in document analysis. In: 2015 13th International Conference on Document Analysis and Recognition (ICDAR), pp. 436–440 (2015). https://doi.org/10.1109/ICDAR.2015.7333799

  4. Chorianopoulos, A., Daramouskas, I., Perikos, I., Grivokostopoulou, F., Hatzilygeroudis, I.: Deep learning methods in medical imaging for the recognition of breast cancer. In: 2020 11th International Conference on Information, Intelligence, Systems and Applications (IISA), pp. 1–8. IEEE Computer Society, Los Alamitos, CA, USA, July 2020. https://doi.org/10.1109/IISA50023.2020.9284373. https://doi.ieeecomputersociety.org/10.1109/IISA50023.2020.9284373

  5. Codalab: Lits - liver tumor segmentation challenge. https://competitions.codalab.org/competitions/17094#learn_the_details

  6. Dabiri, S., et al.: Deep learning method for localization and segmentation of abdominal CT. Comput. Med. Imaging Graph. 85, 101776 (2020)

    Google Scholar 

  7. Durand, T., Hattingh, M.: Data mining and artificial intelligence techniques used to extract big data patterns. In: 2020 2nd International Multidisciplinary Information Technology and Engineering Conference (IMITEC), pp. 1–8. IEEE Computer Society, Los Alamitos, CA, USA, November 2020. https://doi.org/10.1109/IMITEC50163.2020.9334069. https://doi.ieeecomputersociety.org/10.1109/IMITEC50163.2020.9334069

  8. Gigandet, X., Cuadra, M.B., Pointet, A., Cammoun, L., Caloz, R., Thiran, J.: Region-based satellite image classification: method and validation. In: IEEE International Conference on Image Processing 2005, vol. 3, pp. III–832 (2005). https://doi.org/10.1109/ICIP.2005.1530521

  9. Gomez-Espinosa, A.: Developing robot manipulators in mechatronics and robotics. In: 2018 International Conference on Mechatronics, Electronics and Automotive Engineering (ICMEAE), pp. 44–49. IEEE Computer Society, Los Alamitos, CA, USA, November 2018. https://doi.org/10.1109/ICMEAE.2018.00015. https://doi.ieeecomputersociety.org/10.1109/ICMEAE.2018.00015

  10. Goodfellow, I., Bengio, Y., Courville, A., Bengio, Y.: Deep Learning, vol. 1. MIT Press, Cambridge (2016)

    Google Scholar 

  11. Guo, S., Wang, L.: Automatic CT image segmentation of the lungs with an iterative Chan-Vese algorithm. In: 2015 International Conference on Informatics, Electronics and Vision (ICIEV), pp. 1–4. IEEE Computer Society, Los Alamitos, CA, USA, June 2015. https://doi.org/10.1109/ICIEV.2015.7334070. https://doi.ieeecomputersociety.org/10.1109/ICIEV.2015.7334070

  12. Hashimoto, D.A., Rosman, G., Rus, D., Meireles, O.R.: Artificial intelligence in surgery: promises and perils. Ann. Surg. 268(1), 70–76 (2018). https://doi.org/10.1097/SLA.0000000000002693

    CrossRef  Google Scholar 

  13. Iorga, C., Neagoe, V.: A deep CNN approach with transfer learning for image recognition. In: 2019 11th International Conference on Electronics, Computers and Artificial Intelligence (ECAI), pp. 1–6 (2019). https://doi.org/10.1109/ECAI46879.2019.9042173

  14. Islam, M.T., Karim Siddique, B.M.N., Rahman, S., Jabid, T.: Food image classification with convolutional neural network. In: 2018 International Conference on Intelligent Informatics and Biomedical Sciences (ICIIBMS), vol. 3, pp. 257–262 (2018). https://doi.org/10.1109/ICIIBMS.2018.8550005

  15. Jannesari, M., et al.: Breast cancer histopathological image classification: a deep learning approach. In: 2018 IEEE International Conference on Bioinformatics and Biomedicine (BIBM). pp. 2405–2412. IEEE Computer Society, Los Alamitos, CA, USA, December 2018. https://doi.org/10.1109/BIBM.2018.8621307. https://doi.ieeecomputersociety.org/10.1109/BIBM.2018.8621307

  16. kaitouni, S.E., Tairi, H.: Segmentation of medical images for the extraction of brain tumors: a comparative study between the hidden Markov and deep learning approaches. In: 2020 International Conference on Intelligent Systems and Computer Vision (ISCV), pp. 1–5. IEEE Computer Society, Los Alamitos, CA, USA, June 2020. https://doi.org/10.1109/ISCV49265.2020.9204319. https://doi.ieeecomputersociety.org/10.1109/ISCV49265.2020.9204319

  17. Kim, D.W., Jang, H.Y., Kim, K.W., Shin, Y., Park, S.H.: Design characteristics of studies reporting the performance of artificial intelligence algorithms for diagnostic analysis of medical images: results from recently published papers. Korean J. Radiol. 20(3), 405–410 (2019). https://doi.org/10.3348/kjr.2019.0025

    CrossRef  Google Scholar 

  18. Kosaraju, S.C., et al.: DoT-Net: document layout classification using texture-based CNN. In: 2019 International Conference on Document Analysis and Recognition (ICDAR), pp. 1029–1034 (2019). https://doi.org/10.1109/ICDAR.2019.00168

  19. Li, Y., Xie, X., Liu, S., Li, X., Shen, L.: GT-Net: a deep learning network for gastric tumor diagnosis. In: 2018 IEEE 30th International Conference on Tools with Artificial Intelligence (ICTAI), pp. 20–24. IEEE Computer Society, Los Alamitos, CA, USA, November 2018. https://doi.org/10.1109/ICTAI.2018.00014. https://doi.ieeecomputersociety.org/10.1109/ICTAI.2018.00014

  20. Liu, J., Zhai, X., Han, A., Ding, S., Wang, M., Yin, P.: The future development of traditional Chinese medicine from the perspective of artificial intelligence with big data. In: 2018 IEEE 4th International Conference on Big Data Security on Cloud (BigDataSecurity), IEEE International Conference on High Performance and Smart Computing, (HPSC) and IEEE International Conference on Intelligent Data and Security (IDS), pp. 204–209. IEEE Computer Society, Los Alamitos, CA, USA, May 2018. https://doi.org/10.1109/BDS/HPSC/IDS18.2018.00051. https://doi.ieeecomputersociety.org/10.1109/BDS/HPSC/IDS18.2018.00051

  21. Pal, R., Saraswat, M.: Enhanced bag of features using Alexnet and improved biogeography-based optimization for histopathological image analysis. In: 2018 Eleventh International Conference on Contemporary Computing (IC3), pp. 1–6. IEEE Computer Society, Los Alamitos, CA, USA, August 2018. https://doi.org/10.1109/IC3.2018.8530540. https://doi.ieeecomputersociety.org/10.1109/IC3.2018.8530540

  22. Qu, D., Huang, Z., Gao, Z., Zhao, Y., Zhao, X., Song, G.: An automatic system for smile recognition based on CNN and face detection. In: 2018 IEEE International Conference on Robotics and Biomimetics (ROBIO), pp. 243–247 (2018). https://doi.org/10.1109/ROBIO.2018.8665310

  23. Ramanath, A., Muthusrinivasan, S., Xie, Y., Shekhar, S., Ramachandra, B.: NDVI versus CNN features in deep learning for land cover classification of aerial images. In: IGARSS 2019, 2019 IEEE International Geoscience and Remote Sensing Symposium, pp. 6483–6486 (2019). https://doi.org/10.1109/IGARSS.2019.8900165

  24. Sadiq, R., Rodriguez, M.J., Mian, H.R.: Empirical Models to Predict Disinfection by-Products (DBPs) in Drinking Water: An Updated Review. 2 edn., Elsevier Inc., Amsterdam (2019). https://doi.org/10.1016/B978-0-12-409548-9.11193-5. http://dx.doi.org/10.1016/B978-0-12-409548-9.11193-5

  25. Sakboonyara, B., Taeprasartsit, P.: U-net and mean-shift histogram for efficient liver segmentation from CT images. In: 2019 11th International Conference on Knowledge and Smart Technology, KST 2019, pp. 51–56 (2019). https://doi.org/10.1109/KST.2019.8687816

  26. Seng, W., Chitsaz, M.: Medical image segmentation by using reinforcement learning agent. In: International Conference on Digital Image Processing, pp. 216–219. IEEE Computer Society, Los Alamitos, CA, USA, March 2009. https://doi.org/10.1109/ICDIP.2009.14. https://doi.ieeecomputersociety.org/10.1109/ICDIP.2009.14

  27. Shahin, M.A.: State-of-the-art review of some artificial intelligence applications in pile foundations. Geosci. Front. 7(1), 33–44 (2016)

    Google Scholar 

  28. Shapiro, S.C.: Artificial Intelligence (AI), pp. 89–93. Wiley, Hoboken (2003)

    Google Scholar 

  29. Stefaniga, S., Gaianu, M.: An approach of segmentation method using deep learning for CT medical images. In: 2019 21st International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC), pp. 273–279. IEEE Computer Society, Los Alamitos, CA, USA, September 2019. https://doi.org/10.1109/SYNASC49474.2019.00045. https://doi.ieeecomputersociety.org/10.1109/SYNASC49474.2019.00045

  30. Susomboon, R., Raicu, D., Furst, J., Channin, D.: Automatic single-organ segmentation in computed tomography images. In: Sixth International Conference on Data Mining (ICDM 2006), pp. 1081–1086. IEEE Computer Society, Los Alamitos, CA, USA, December 2006. https://doi.org/10.1109/ICDM.2006.24. https://doi.ieeecomputersociety.org/10.1109/ICDM.2006.24

  31. Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. MIT Press, Cambridge (2018)

    Google Scholar 

  32. Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, Cham (2010). https://doi.org/10.1007/978-1-84882-935-0

  33. Tizhoosh, H.R., Panta nowitz, L.: Artificial intelligence and digital pathology: challenges and opportunities (2018)

    Google Scholar 

  34. Wang, Y., et al.: On autonomous systems: from reflexive, imperative and adaptive intelligence to autonomous and cognitive intelligence. In: 2019 IEEE 18th International Conference on Cognitive Informatics & Cognitive Computing (ICCI*CC), pp. 7–12. IEEE Computer Society, Los Alamitos, CA, USA, July 2019. https://doi.org/10.1109/ICCICC46617.2019.9146038. https://doi.ieeecomputersociety.org/10.1109/ICCICC46617.2019.9146038

  35. Wang, Y., Zhou, Y., Shen, W., Park, S., Fishman, E.K., Yuille, A.L.: Abdominal multi-organ segmentation with organ-attention networks and statistical fusion. Med. Image Anal. 55, 88–102 (2019)

    Google Scholar 

  36. Xiao, Z., et al.: A deep learning-based segmentation method for brain tumor in MR images. In: 2016 IEEE 6th International Conference on Computational Advances in Bio and Medical Sciences (ICCABS), pp. 1–6. IEEE Computer Society, Los Alamitos, CA, USA, October 2016. https://doi.org/10.1109/ICCABS.2016.7802771. https://doi.ieeecomputersociety.org/10.1109/ICCABS.2016.7802771

  37. Xu, J., Liu, H.: Segmentation of pulmonary CT image by using convolutional neural network based on membership function. In: 2017 IEEE International Conference on Computational Science and Engineering (CSE) and IEEE International Conference on Embedded and Ubiquitous Computing (EUC), vol. 1, pp. 198–203. IEEE Computer Society, Los Alamitos, CA, USA, July 2017. https://doi.org/10.1109/CSE-EUC.2017.42. https://doi.ieeecomputersociety.org/10.1109/CSE-EUC.2017.42

  38. Xue, W., Wenxia, X., Guodong, L.: Image edge detection algorithm research based on the CNN’s neighborhood radius equals 2. In: 2016 International Conference on Smart Grid and Electrical Automation (ICSGEA), pp. 115–119 (2016). https://doi.org/10.1109/ICSGEA.2016.38

  39. Yan, Q., et al.: Covid-19 chest CT image segmentation network by multi-scale fusion and enhancement operations. IEEE Trans. Big Data 7(01), 13–24 (2021). https://doi.org/10.1109/TBDATA.2021.3056564

  40. Zhang, Y., Zhao, M., Yan, L., Gao, T., Chen, J.: CNN-based anomaly detection for face presentation attack detection with multi-channel images. In: 2020 IEEE International Conference on Visual Communications and Image Processing (VCIP), pp. 189–192 (2020). https://doi.org/10.1109/VCIP49819.2020.9301818

  41. Zhou, Y., Li, Z., Bai, S., Chen, X., Han, M., Wang, C., Fishman, E., Yuille, A.: Prior-aware neural network for partially-supervised multi-organ segmentation. In: 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 10671–10680. IEEE Computer Society, Los Alamitos, CA, USA, November 2019. https://doi.org/10.1109/ICCV.2019.01077. https://doi.ieeecomputersociety.org/10.1109/ICCV.2019.01077

  42. Zou, W., Lu, H., Yan, K., Ye, M.: Breast cancer histopathological image classification using deep learning. In: 2019 10th International Conference on Information Technology in Medicine and Education (ITME), pp. 53–57. IEEE Computer Society, Los Alamitos, CA, USA, August 2019. https://doi.org/10.1109/ITME.2019.00023. https://doi.ieeecomputersociety.org/10.1109/ITME.2019.00023

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shirley Chuquín .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Chuquín, S., Cuenca, E. (2022). Computerized Tomography Images Processing Using Artificial Intelligence Techniques. In: Botto-Tobar, M., Cruz, H., Díaz Cadena, A., Durakovic, B. (eds) Emerging Research in Intelligent Systems. CIT 2021. Lecture Notes in Networks and Systems, vol 405. Springer, Cham. https://doi.org/10.1007/978-3-030-96043-8_16

Download citation