Skip to main content

Can MCDA Methods Be Useful in E-commerce Systems? Comparative Study Case

  • 839 Accesses

Part of the Communications in Computer and Information Science book series (CCIS,volume 1534)


Shopping via e-commerce sites is becoming increasingly popular among customers. More and more such sites are being created, and more marketing activities and innovative solutions are needed to attract customers’ attention to increase competitiveness and stand out on the market. An effective tactic is to take the consumer’s needs into account as much as possible and keep them satisfied to become regular customers and recommend the place to their family and friends. For responding to the customers’ needs, it is essential to recognise and understand them. The ever-increasing variety of products on the market and the need to consider an expanding number of technical parameters of equipment and devices make the selection of purchased products and goods by consumers more and more challenging. The problem of selecting purchased products is, therefore, a multi-criteria problem. An intuitive approach and consideration of only the main selection criteria may result in inappropriate choices. Multi-criteria decision-analysis methods (MCDA) are techniques designed to solve this type of problem.

This paper demonstrates an innovative concept based on MCDA methods, including a novel hybrid approach combining COMET with TOPSIS, TOPSIS and VIKOR, used as a tool to support consumer choices in e-commerce systems. The authors performed a comparative analysis of the applied methods using two ranking similarity coefficients: asymmetrical WS and symmetrical \(r_w\). The study was completed with a sensitivity analysis. The results obtained suggest the potentially promising usefulness and suitability of the proposed tool in e-commerce systems.


  • Multi-criteria customer choices
  • E-commerce
  • MCDA

This is a preview of subscription content, access via your institution.

Buying options

USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
USD   109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions


  1. Aytaç Adalı, E., Tuş Işık, A.: The multi-objective decision making methods based on MULTIMOORA and MOOSRA for the laptop selection problem. J. Ind. Eng. Int. 13(2), 229–237 (2016).

    CrossRef  Google Scholar 

  2. Bączkiewicz, A., Wątróbski, J., Sałabun, W.: Towards MCDA based decision support system addressing sustainable assessment (2021).

  3. Behzadian, M., Otaghsara, S.K., Yazdani, M., Ignatius, J.: A state-of the-art survey of TOPSIS applications. Expert Syst. Appl. 39(17), 13051–13069 (2012)

    CrossRef  Google Scholar 

  4. Sönmez Çakır, F., Pekkaya, M.: Determination of interaction between criteria and the criteria priorities in laptop selection problem. Int. J. Fuzzy Syst. 22(4), 1177–1190 (2020).

    CrossRef  Google Scholar 

  5. Dezert, J., Tchamova, A., Han, D., Tacnet, J.M.: The SPOTIS rank reversal free method for multi-criteria decision-making support. In: 2020 IEEE 23rd International Conference on Information Fusion (FUSION), pp. 1–8. IEEE (2020)

    Google Scholar 

  6. Faizi, S., Sałabun, W., Rashid, T., Wątróbski, J., Zafar, S.: Group decision-making for hesitant fuzzy sets based on characteristic objects method. Symmetry 9(8), 136 (2017)

    CrossRef  MathSciNet  Google Scholar 

  7. Faizi, S., Sałabun, W., Ullah, S., Rashid, T., Więckowski, J.: A new method to support decision-making in an uncertain environment based on normalized interval-valued triangular fuzzy numbers and COMET technique. Symmetry 12(4), 516 (2020)

    CrossRef  Google Scholar 

  8. Goswami, S., Mitra, S.: Selecting the best mobile model by applying AHP-COPRAS and AHP-ARAS decision making methodology. Int. J. Data Netw. Sci. 4(1), 27–42 (2020)

    CrossRef  Google Scholar 

  9. Goswami, S.S., Behera, D.K.: Evaluation of the best smartphone model in the market by integrating fuzzy-AHP and PROMETHEE decision-making approach. DECISION 48(1), 71–96 (2021).

    CrossRef  Google Scholar 

  10. Kecek, G., Demirağ, F.: A comparative analysis of TOPSIS and MOORA in laptop selection. Res. Humanit. Soc. Sci. 6(14) (2016). 2225-0484

    Google Scholar 

  11. Kizielewicz, B., Kołodziejczyk, J.: Effects of the selection of characteristic values on the accuracy of results in the COMET method. Procedia Comput. Sci. 176, 3581–3590 (2020)

    CrossRef  Google Scholar 

  12. Kizielewicz, B., Shekhovtsov, A., Sałabun, W.: A new approach to eliminate rank reversal in the MCDA problems. In: Paszynski, M., Kranzlmüller, D., Krzhizhanovskaya, V.V., Dongarra, J.J., Sloot, P.M.A. (eds.) ICCS 2021. LNCS, vol. 12742, pp. 338–351. Springer, Cham (2021).

    CrossRef  Google Scholar 

  13. Kizielewicz, B., Wątróbski, J., Sałabun, W.: Identification of relevant criteria set in the MCDA process-wind farm location case study. Energies 13(24), 6548 (2020)

    CrossRef  Google Scholar 

  14. Maliene, V., Dixon-Gough, R., Malys, N.: Dispersion of relative importance values contributes to the ranking uncertainty: sensitivity analysis of multiple criteria decision-making methods. Appl. Soft Comput. 67, 286–298 (2018)

    CrossRef  Google Scholar 

  15. Opricovic, S., Tzeng, G.H.: Compromise solution by MCDM methods: a comparative analysis of VIKOR and TOPSIS. Eur. J. Oper. Res. 156(2), 445–455 (2004)

    CrossRef  Google Scholar 

  16. Papathanasiou, J., Ploskas, N.: Multiple Criteria Decision Aid. SOIA, vol. 136. Springer, Cham (2018).

    CrossRef  MATH  Google Scholar 

  17. Sałabun, W.: Reduction in the number of comparisons required to create matrix of expert judgment in the COMET method. Manag. Prod. Eng. Rev. 5 (2014)

    Google Scholar 

  18. Sałabun, W.: The characteristic objects method: a new distance-based approach to multicriteria decision-making problems. J. Multi-Criteria Decis. Anal. 22(1–2), 37–50 (2015)

    CrossRef  Google Scholar 

  19. Sałabun, W., Karczmarczyk, A.: Using the COMET method in the sustainable city transport problem: an empirical study of the electric powered cars. Procedia Comput. Sci. 126, 2248–2260 (2018)

    CrossRef  Google Scholar 

  20. Sałabun, W., Karczmarczyk, A., Wątróbski, J.: Decision-making using the hesitant fuzzy sets COMET method: an empirical study of the electric city buses selection. In: 2018 IEEE Symposium Series on Computational Intelligence (SSCI), pp. 1485–1492. IEEE (2018)

    Google Scholar 

  21. Sałabun, W., Urbaniak, K.: A new coefficient of rankings similarity in decision-making problems. In: Krzhizhanovskaya, V.V., et al. (eds.) ICCS 2020. LNCS, vol. 12138, pp. 632–645. Springer, Cham (2020).

    CrossRef  Google Scholar 

  22. Sałabun, W., Wątróbski, J., Shekhovtsov, A.: Are MCDA methods benchmarkable? A comparative study of TOPSIS, VIKOR, COPRAS, and PROMETHEE II methods. Symmetry 12(9), 1549 (2020)

    CrossRef  Google Scholar 

  23. Sałabun, W., Ziemba, P., Wątróbski, J.: The rank reversals paradox in management decisions: the comparison of the AHP and COMET methods. In: Czarnowski, I., Caballero, A.M., Howlett, R.J., Jain, L.C. (eds.) Intelligent Decision Technologies 2016. SIST, vol. 56, pp. 181–191. Springer, Cham (2016).

    CrossRef  Google Scholar 

  24. Shekhovtsov, A., Kizielewicz, B., Sałabun, W.: New rank-reversal free approach to handle interval data in MCDA problems. In: Paszynski, M., Kranzlmüller, D., Krzhizhanovskaya, V.V., Dongarra, J.J., Sloot, P.M.A. (eds.) ICCS 2021. LNCS, vol. 12747, pp. 458–472. Springer, Cham (2021).

    CrossRef  Google Scholar 

  25. Shekhovtsov, A., Kołodziejczyk, J., Sałabun, W.: Fuzzy model identification using monolithic and structured approaches in decision problems with partially incomplete data. Symmetry 12(9), 1541 (2020)

    CrossRef  Google Scholar 

  26. Shekhovtsov, A., Kozlov, V., Nosov, V., Sałabun, W.: Efficiency of methods for determining the relevance of criteria in sustainable transport problems: a comparative case study. Sustainability 12(19), 7915 (2020)

    CrossRef  Google Scholar 

  27. Shekhovtsov, A., Więckowski, J., Kizielewicz, B., Sałabun, W.: Towards reliable decision-making in the green urban transport domain. Facta Universitatis, Series: Mechanical Engineering (2021)

    Google Scholar 

  28. Wątróbski, J., Jankowski, J., Ziemba, P., Karczmarczyk, A., Zioło, M.: Generalised framework for multi-criteria method selection. Omega 86, 107–124 (2019)

    CrossRef  Google Scholar 

  29. Wątróbski, J., Sałabun, W., Karczmarczyk, A., Wolski, W.: Sustainable decision-making using the COMET method: an empirical study of the ammonium nitrate transport management. In: 2017 Federated Conference on Computer Science and Information Systems (FedCSIS), pp. 949–958. IEEE (2017)

    Google Scholar 

Download references


The work was supported by the National Science Centre, Dec. number UMO-2018/29/B/HS4/02725 (A.S., B.K. and W.S.).

Author information

Authors and Affiliations


Corresponding author

Correspondence to Wojciech Sałabun .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kizielewicz, B., Bączkiewicz, A., Shekhovtsov, A., Więckowski, J., Sałabun, W. (2022). Can MCDA Methods Be Useful in E-commerce Systems? Comparative Study Case. In: Woungang, I., Dhurandher, S.K., Pattanaik, K.K., Verma, A., Verma, P. (eds) Advanced Network Technologies and Intelligent Computing. ANTIC 2021. Communications in Computer and Information Science, vol 1534. Springer, Cham.

Download citation

  • DOI:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-96039-1

  • Online ISBN: 978-3-030-96040-7

  • eBook Packages: Computer ScienceComputer Science (R0)