Skip to main content

Analyzing the Behavior of Real-Time Tasks in Fog-Cloud Architecture

  • 317 Accesses

Part of the Communications in Computer and Information Science book series (CCIS,volume 1534)


The growing number of IoT devices generates a huge amount of data that are generally processed by the Cloud datacenter. However, it results in inordinate delay for time-critical applications due to network intricacies. Fog computing has evolved in recent which provides similar facilities as of Cloud though in a reduced manner. In order to provide the desired quality of service to the IoT users, it is essential to classify and allocate Fog-Cloud resources optimally to the time-critical requests. In this work, we have developed an analytical model focusing on the design mechanism approach and optimal policies for the allocation and offloading of real-time tasks that results in overall time minimization.


  • Cloud computing
  • Fog computing
  • Fog-aggregation
  • Offloading

This is a preview of subscription content, access via your institution.

Buying options

USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-96040-7_18
  • Chapter length: 11 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
USD   109.00
Price excludes VAT (USA)
  • ISBN: 978-3-030-96040-7
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   149.99
Price excludes VAT (USA)
Fig. 1.
Fig. 2.
Fig. 3.


  1. He, J., Wei, J., Chen, K., Tang, Z., Zhou, Y., Zhang, Y.: Multitier fog computing with large-scale IoT data analytics for smart cities. IEEE Internet Things J. 5(2), 677–686 (2018)

    CrossRef  Google Scholar 

  2. Nan, Y., et al.: Adaptive energy-aware computation offloading for cloud of things systems. IEEE Access 5, 23947–23957 (2017)

    CrossRef  Google Scholar 

  3. Sarkar, S., Chatterjee, S., Misra, S.: Assessment of the suitability of fog computing in the context of internet of things. IEEE Trans. Cloud Comput. 6(1), 46–59 (2018)

    CrossRef  Google Scholar 

  4. Travelling team: en-USThe Changing Face of World Missions - The Strategic Context.

  5. Yadav, P., Kar, S.: Evaluating the impact of region based content popularity of videos on the cost of CDN deployment. In: National Conference on Communications (NCC) 2020, pp. 1–6 (2020)

    Google Scholar 

  6. Fan, Q., Ansari, N.: Workload allocation in hierarchical cloudlet networks. IEEE Commun. Lett. 22(4), 820–823 (2018)

    CrossRef  Google Scholar 

  7. Guo, S., Liu, J., Yang, Y., Xiao, B., Li, Z.: Energy-efficient dynamic computation offloading and cooperative task scheduling in mobile cloud computing. IEEE Trans. Mob. Comput. 18(2), 319–333 (2019)

    CrossRef  Google Scholar 

  8. Deng, R., Lu, R., Lai, C., Luan, T.H., Liang, H.: Optimal workload allocation in fog-cloud computing toward balanced delay and power consumption. IEEE Internet Things J. 3(6), 1171–1181 (2016)

    Google Scholar 

  9. Yousefpour, A., Ishigaki, G., Gour, R., Jue, J.P.: On reducing IoT service delay via fog offloading. IEEE Internet Things J. 5(2), 998–1010 (2018). arXiv: 1804.07376

  10. Rahbari, D., Nickray, M.: enTask offloading in mobile fog computing by classification and regression tree. enPeer-to-Peer Netw. Appl. 13(1), 104–122 (2020).

  11. Liu, Y., Yu, F.R., Li, X., Ji, H., Leung, V.C.: Hybrid computation offloading in fog and cloud networks with non-orthogonal multiple access. In: IEEE INFOCOM 2018 - IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS), pp. 154–159, April 2018

    Google Scholar 

  12. Majeed, A.A., Kilpatrick, P., Spence, I., Varghese, B.: Modelling Fog Offloading Performance, arXiv:2002.05531 [cs], February 2020

  13. Zhang, G., Shen, F., Liu, Z., Yang, Y., Wang, K., Zhou, M.-T.: FEMTO: fair and energy-minimized task offloading for fog-enabled IoT networks. IEEE Internet Things J. 6(3), 4388–4400 (2019)

    CrossRef  Google Scholar 

  14. Gu, L., Zeng, D., Guo, S., Barnawi, A., Xiang, Y.: enCost efficient resource management in fog computing supported medical cyber-physical system. enIEEE Trans. Emerg. Topics Comput. 5(1), 108–119 (2017).

  15. Akbar, A., Ibrar, M., Jan, M.A., Bashir, A.K., Wang, L.: SDN-enabled adaptive and reliable communication in IoT-fog environment using machine learning and multiobjective optimization. IEEE Internet Things J. 8(5), 3057–3065 (2021)

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations


Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Yadav, P., Vidyarthi, D.P. (2022). Analyzing the Behavior of Real-Time Tasks in Fog-Cloud Architecture. In: Woungang, I., Dhurandher, S.K., Pattanaik, K.K., Verma, A., Verma, P. (eds) Advanced Network Technologies and Intelligent Computing. ANTIC 2021. Communications in Computer and Information Science, vol 1534. Springer, Cham.

Download citation

  • DOI:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-96039-1

  • Online ISBN: 978-3-030-96040-7

  • eBook Packages: Computer ScienceComputer Science (R0)