Skip to main content

COMET: A Domain-Specific Compilation of High-Performance Computational Chemistry

  • Conference paper
  • First Online:
Languages and Compilers for Parallel Computing (LCPC 2020)

Abstract

The computational power increases over the past decades have greatly enhanced the ability to simulate chemical reactions and understand ever more complex transformations. Tensor contractions are the fundamental computational building block of these simulations. These simulations have often been tied to one platform and restricted in generality by the interface provided to the user. The expanding prevalence of accelerators and researcher demands necessitate a more general approach which is not tied to specific hardware or requires contortion of algorithms to specific hardware platforms. In this paper we present COMET, a domain-specific programming language and compiler infrastructure for tensor contractions targeting heterogeneous accelerators. We present a system of progressive lowering through multiple layers of abstraction and optimization that achieves up to \(1.98\times \) speedup for 30 tensor contractions commonly used in computational chemistry and beyond.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abadi, M., et al.: TensorFlow: large-scale machine learning on heterogeneous systems (2015). https://www.tensorflow.org/. software available from tensorflow.org

  2. Aprá, E., et al.: NWChem: past, present, and future. J. Chem. Phys. 152(18), 184102 (2020). https://doi.org/10.1063/5.0004997

    Article  Google Scholar 

  3. Einstein, A.: Die grundlage der allgemeinen relativitätstheorie. Ann. Phys. 354(7), 769–822 (1916). https://doi.org/10.1002/andp.19163540702

    Article  MATH  Google Scholar 

  4. Epifanovsky, E., et al.: New implementation of high-level correlated methods using a general block tensor library for high-performance electronic structure calculations. J. Comput. Chem. 34(26), 2293–2309 (2013)

    Article  Google Scholar 

  5. Fishman, M., White, S.R., Stoudenmire, E.M.: The itensor software library for tensor network calculations (2020)

    Google Scholar 

  6. Google: TensorNetwork (2020). https://github.com/google/TensorNetwork

  7. Gunnels, J.A., et al.: FLAME: formal linear algebra methods environment. ACM Trans. Math. Softw. 27(4), 422–455 (2001)

    Article  Google Scholar 

  8. Hirata, S.: Tensor contraction engine: abstraction and automated parallel implementation of configuration-interaction, coupled-cluster, and many-body perturbation theories. J. Phys. Chem. A 107(46), 9887–9897 (2003)

    Article  Google Scholar 

  9. Intel: Math kernel library (2012). http://developer.intel.com/software/products/mkl/

  10. Jouppi, N.P., et al.: In-datacenter performance analysis of a tensor processing unit. In: Proceedings of the 44th Annual International Symposium on Computer Architecture, pp. 1–12 (2017)

    Google Scholar 

  11. Lattner, C., Adve, V.: LLVM: a compilation framework for lifelong program analysis and transformation. In: CGO ’04, San Jose, CA, USA, pp. 75–88 (2004)

    Google Scholar 

  12. Lattner, C., et al.: MLIR: a compiler infrastructure for the end of Moore’s law. arXiv preprint arXiv:2002.11054 (2020)

  13. Poulson, J., et al.: Elemental: a new framework for distributed memory dense matrix computations. ACM Trans. Math. Softw. 39(2), 13:1–13:24 (2013)

    Google Scholar 

  14. Ragan-Kelley, J., et al.: Halide: A language and compiler for optimizing parallelism, locality, and recomputation in image processing pipelines. In: PLDI’13, pp. 519–530 (2013)

    Google Scholar 

  15. Raghavachari, K., et al.: A fifth-order perturbation comparison of electron correlation theories. Chem. Phys. Lett. 157, 479–483 (1989)

    Article  Google Scholar 

  16. Schatz, M., van de Geijn, R., Poulson, J.: Parallel matrix multiplication: a systematic journey. SIAM J. Sci. Comput. 38(6), C748–C781 (2016)

    Article  MathSciNet  Google Scholar 

  17. Schatz, M.D., Low, T.M., van de Geijn, R.A., Kolda, T.G.: Exploiting symmetry in tensors for high performance: multiplication with symmetric tensors. SIAM J. Sci. Comput. 36(5), C453–C479 (2014)

    Article  MathSciNet  Google Scholar 

  18. Shao, Y.S., et al.: Aladdin: a pre-RTL, power-performance accelerator simulator enabling large design space exploration of customized architectures. In: ISCA, pp. 97–108. IEEE Press (2014)

    Google Scholar 

  19. Solomonik, E., Matthews, D., Hammond, J.R., Stanton, J.F., Demmel, J.: A massively parallel tensor contraction framework for coupled-cluster computations. J. Parallel Distrib. Comput. 74(12), 3176–3190 (2014)

    Article  Google Scholar 

  20. Springer, P., Bientinesi, P.: Design of a high-performance Gemm-like tensor-tensor multiplication. ACM Trans. Math. Softw. 44(3), 1–29 (2018)

    Article  MathSciNet  Google Scholar 

  21. Springer, P., Su, T., Bientinesi, P.: HPTT: a high-performance tensor transposition C++ library, pp. 56–62 (2017)

    Google Scholar 

  22. Van Zee, F.G., Van De Geijn, R.A.: BLIS: a framework for rapidly instantiating BLAS functionality. ACM Trans. Math. Softw. 41(3), 14:1–14:33 (2015)

    Google Scholar 

Download references

Acknowledgement

This research is supported by PNNL Laboratory Directed Research and Development Program (LDRD), Data-Model Convergence Initiative, project DuoMO: A Compiler Infrastructure for Data-Model Convergence, and project Hybrid Advanced Workflows.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gokcen Kestor .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Battelle Memorial Institute

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mutlu, E. et al. (2022). COMET: A Domain-Specific Compilation of High-Performance Computational Chemistry. In: Chapman, B., Moreira, J. (eds) Languages and Compilers for Parallel Computing. LCPC 2020. Lecture Notes in Computer Science(), vol 13149. Springer, Cham. https://doi.org/10.1007/978-3-030-95953-1_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-95953-1_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-95952-4

  • Online ISBN: 978-3-030-95953-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics