Skip to main content

Rehabilitation: Soft Tissue Coverage

  • Chapter
  • First Online:
Textbook of Polytrauma Management
  • 1531 Accesses

Abstract

The reconstruction of complex soft tissue losses associated with underlying fractures remains a clinical challenge. Many different factors have to be considered in the treatment algorithm to achieve functional recovery of the limb. Timing between injury and the definitive reconstruction has become less important. Instead the focus needs to be on aggressive debridement combined with a targeted antibiotic therapy and negative pressure wound therapy treatment to bridge the time until the optimal setup both on patient and clinician site is available. Defect coverage can often be achieved with regional flaps in the upper part of the lower limb. The distal third of the lower limb often requires coverage with a free tissue transfer. The current literature offers no evidence to support superior outcomes of either limb salvage or primary amputation for type IIIB and IIIC tibial fractures. When outcomes are similar between two treatment strategies, economic analysis that incorporates cost and preference may define an optimal treatment strategy to guide physicians and patients.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aldea PA, Shaw WW. The evolution of the surgical management of severe lower extremity trauma. Clin Plast Surg. 1986;13(4):549–69.

    Article  CAS  PubMed  Google Scholar 

  2. Tomaino MM. Amputation or salvage of type 3B/3C tibial fractures: what the literature says about outcomes. Am J Orthop (Belle Mead NJ). 2001;30(5):380–5.

    CAS  Google Scholar 

  3. Fischer JP, Wink JD, Nelson JA, Cleveland E, Grover R, Wu LC, et al. A retrospective review of outcomes and flap selection in free tissue transfers for complex lower extremity reconstruction. J Reconstr Microsurg. 2013;29(6):407–16.

    Article  PubMed  Google Scholar 

  4. Harley BJ, Beaupre LA, Jones CA, Dulai SK, Weber DW. The effect of time to definitive treatment on the rate of nonunion and infection in open fractures. J Orthop Trauma. 2002;16(7):484–90.

    Article  PubMed  Google Scholar 

  5. MacKenzie EJ, Bosse MJ, Kellam JF, Burgess AR, Webb LX, Swiontkowski MF, et al. Factors influencing the decision to amputate or reconstruct after high-energy lower extremity trauma. J Trauma. 2002;52(4):641–9.

    PubMed  Google Scholar 

  6. Ger R. The management of open fracture of the tibia with skin loss. J Trauma. 1970;10(2):112–21.

    Article  CAS  PubMed  Google Scholar 

  7. Heller L, Levin LS. Lower extremity microsurgical reconstruction. Plast Reconstr Surg. 2001;108(4):1029–41; quiz 1042.

    Article  CAS  PubMed  Google Scholar 

  8. Francel TJ, Vander Kolk CA, Hoopes JE, Manson PN, Yaremchuk MJ. Microvascular soft-tissue transplantation for reconstruction of acute open tibial fractures: timing of coverage and long-term functional results. Plast Reconstr Surg. 1992;89(3):478–87; discussion 488–9.

    Article  CAS  PubMed  Google Scholar 

  9. Kumar AR, Grewal NS, Chung TL, Bradley JP. Lessons from operation Iraqi freedom: successful subacute reconstruction of complex lower extremity battle injuries. Plast Reconstr Surg. 2009;123(1):218–29.

    Article  CAS  PubMed  Google Scholar 

  10. Karanas YL, Nigriny J, Chang J. The timing of microsurgical reconstruction in lower extremity trauma. Microsurgery. 2008;28(8):632–4.

    Article  PubMed  Google Scholar 

  11. Steiert AE, Gohritz A, Schreiber TC, Krettek C, Vogt PM. Delayed flap coverage of open extremity fractures after previous vacuum-assisted closure (VAC) therapy - worse or worth? J Plast Reconstr Aesthetic Surg. 2009;62(5):675–83.

    Article  Google Scholar 

  12. Argenta LC, Morykwas MJ. Vacuum-assisted closure: a new method for wound control and treatment: clinical experience. Ann Plast Surg. 1997;38(6):563–76; discussion 577.

    Article  CAS  PubMed  Google Scholar 

  13. Rinker B, Amspacher JC, Wilson PC, Vasconez HC. Subatmospheric pressure dressing as a bridge to free tissue transfer in the treatment of open tibia fractures. Plast Reconstr Surg. 2008;121(5):1664–73.

    Article  CAS  PubMed  Google Scholar 

  14. Parrett BM, Matros E, Pribaz JJ, Orgill DP. Lower extremity trauma: trends in the management of soft-tissue reconstruction of open tibia-fibula fractures. Plast Reconstr Surg. 2006;117(4):1315–22; discussion 1323–4.

    Article  CAS  PubMed  Google Scholar 

  15. Park JJ, Campbell KA, Mercuri JJ, Tejwani NC. Updates in the management of orthopedic soft-tissue injuries associated with lower extremity trauma. Am J Orthop (Belle Mead NJ). 2012;41(2):E27–35.

    Google Scholar 

  16. Molnar JA, DeFranzo AJ, Hadaegh A, Morykwas MJ, Shen P, Argenta LC. Acceleration of Integra incorporation in complex tissue defects with subatmospheric pressure. Plast Reconstr Surg. 2004;113(5):1339–46.

    Article  PubMed  Google Scholar 

  17. Reddix RN, Tyler HK, Kulp B, Webb LX. Incisional vacuum-assisted wound closure in morbidly obese patients undergoing acetabular fracture surgery. Am J Orthop (Belle Mead NJ). 2009;38(9):446–9.

    Google Scholar 

  18. Jordan DJ, Malahias M, Hindocha S, Juma A. Flap decisions and options in soft tissue coverage of the lower limb. Open Orthop J. 2014;8:423–32.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Crowley DJ, Kanakaris NK, Giannoudis PV. Debridement and wound closure of open fractures: the impact of the time factor on infection rates. Injury. 2007;38(8):879–89.

    Article  CAS  PubMed  Google Scholar 

  20. Reddy V, Stevenson TR. MOC-PS(SM) CME article: lower extremity reconstruction. Plast Reconstr Surg. 2008;121(4 Suppl):1–7.

    Article  PubMed  Google Scholar 

  21. Lee P, Levine J, Wei F-C. Reconstructive surgery of the lower extremity. New York: Thieme Medical Publishers Inc.; 2013.

    Google Scholar 

  22. Kang MJ, Chung CH, Chang YJ, Kim KH. Reconstruction of the lower extremity using free flaps. Arch Plast Surg. 2013;40(5):575–83.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Serafin D, Voci VE. Reconstruction of the lower extremity. Microsurgical composite tissue transplantation. Clin Plast Surg. 1983;10(1):55–72.

    Article  CAS  PubMed  Google Scholar 

  24. Lorenzo AR, Lin C-H, Lin C-H, Lin Y-T, Nguyen A, Hsu C-C, et al. Selection of the recipient vein in microvascular flap reconstruction of the lower extremity: analysis of 362 free-tissue transfers. J Plast Reconstr Aesthetic Surg. 2011;64(5):649–55.

    Article  Google Scholar 

  25. Haug V, Panayi AC, Kadakia N, Abdulrazzak O, Endo Y, Udeh K, et al. Use of venous couplers in microsurgical lower extremity reconstruction: a systematic review and meta-analysis. Microsurgery. 2020;41(1):50–60.

    Article  PubMed  Google Scholar 

  26. Mao H, Xu G. A retrospective study of end-to-side venous anastomosis for free flap in extremity reconstruction. Int J Surg. 2015;17:72–8.

    Article  PubMed  Google Scholar 

  27. Chang EI. My first 100 consecutive microvascular free flaps: pearls and lessons learned in first year of practice. Plast Reconstr Surg Glob Open. 2013;1(4):e27. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4173838/.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Hardy KL, Davis KE, Constantine RS, Chen M, Hein R, Jewell JL, et al. The impact of operative time on complications after plastic surgery: a multivariate regression analysis of 1753 cases. Aesthet Surg J. 2014;34(4):614–22.

    Article  PubMed  Google Scholar 

  29. Azoury SC, Stranix JT, Kovach SJ, Levin LS. Principles of orthoplastic surgery for lower extremity reconstruction: why is this important? J Reconstr Microsurg. 2021;37(1):42–50.

    Article  PubMed  Google Scholar 

  30. Pederson WC, Grome L. Microsurgical reconstruction of the lower extremity. Semin Plast Surg. 2019;33(1):54–8.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Calderon W, Chang N, Mathes SJ. Comparison of the effect of bacterial inoculation in musculocutaneous and fasciocutaneous flaps. Plast Reconstr Surg. 1986;77(5):785–94.

    Article  CAS  PubMed  Google Scholar 

  32. May JW, Rohrich RJ. Foot reconstruction using free microvascular muscle flaps with skin grafts. Clin Plast Surg. 1986;13(4):681–9.

    Article  PubMed  Google Scholar 

  33. Chan JK-K, Harry L, Williams G, Nanchahal J. Soft-tissue reconstruction of open fractures of the lower limb: muscle versus fasciocutaneous flaps. Plast Reconstr Surg. 2012;130(2):284e–95e.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Cho EH, Shammas RL, Carney MJ, Weissler JM, Bauder AR, Glener AD, et al. Muscle versus fasciocutaneous free flaps in lower extremity traumatic reconstruction: a multicenter outcomes analysis. Plast Reconstr Surg. 2018;141(1):191–9.

    Article  CAS  PubMed  Google Scholar 

  35. Hong JP, Shin HW, Kim JJ, Wei F-C, Chung YK. The use of anterolateral thigh perforator flaps in chronic osteomyelitis of the lower extremity. Plast Reconstr Surg. 2005;115(1):142–7.

    CAS  PubMed  Google Scholar 

  36. Couteau C, Rem K, Guillier D, Moris V, Revol M, Cristofari S. Improving free-flap survival using intra-operative heparin: ritualistic practice or evidence-base medicine? A systematic review. Ann Chir Plast Esthet. 2018;63(3):e1–5.

    Article  CAS  PubMed  Google Scholar 

  37. Awwad AM, White RJ, Webster MH, Vance JP. The effect of temperature on blood flow in island and free skin flaps: an experimental study. Br J Plast Surg. 1983;36(3):373–82.

    Article  CAS  PubMed  Google Scholar 

  38. Lunt MJ, Ragab S, Birch AA, Schley D, Jenkinson DF. Comparison of caffeine-induced changes in cerebral blood flow and middle cerebral artery blood velocity shows that caffeine reduces middle cerebral artery diameter. Physiol Meas. 2004;25(2):467–74.

    Article  CAS  PubMed  Google Scholar 

  39. Xipoleas G, Levine E, Silver L, Koch RM, Taub PJ. A survey of microvascular protocols for lower extremity free tissue transfer II: postoperative care. Ann Plast Surg. 2008;61(3):280–4.

    Article  CAS  PubMed  Google Scholar 

  40. Rohde C, Howell BW, Buncke GM, Gurtner GC, Levin LS, Pu LLQ, et al. A recommended protocol for the immediate postoperative care of lower extremity free-flap reconstructions. J Reconstr Microsurg. 2009;25(1):15–9.

    Article  PubMed  Google Scholar 

  41. Isenberg JS, Siegal A, Sherman R. Quantitative evaluation of the effects of gravity and dependency on microvascular tissue transfer to the lower limb, with clinical applications. J Reconstr Microsurg. 1997;13(1):25–9.

    Article  CAS  PubMed  Google Scholar 

  42. Akula M, Gella S, Shaw CJ, McShane P, Mohsen AM. A meta-analysis of amputation versus limb salvage in mangled lower limb injuries—the patient perspective. Injury. 2011;42(11):1194–7.

    Article  PubMed  Google Scholar 

  43. Busse JW, Jacobs CL, Swiontkowski MF, Bosse MJ, Bhandari M, Evidence-Based Orthopaedic Trauma Working Group. Complex limb salvage or early amputation for severe lower-limb injury: a meta-analysis of observational studies. J Orthop Trauma. 2007;21(1):70–6.

    Article  PubMed  Google Scholar 

  44. Saddawi-Konefka D, Kim HM, Chung KC. A systematic review of outcomes and complications of reconstruction and amputation for type IIIB and IIIC fractures of the tibia. Plast Reconstr Surg. 2008;122(6):1796–805.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Chung KC, Saddawi-Konefka D, Haase SC, Kaul G. A cost-utility analysis of amputation versus salvage for Gustilo type IIIB and IIIC open tibial fractures. Plast Reconstr Surg. 2009;124(6):1965–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Bekarev M, Goch AM, Geller DS, Garfein ES. Distally based anterolateral thigh flap: an underutilized option for peri-patellar wound coverage. Strateg Trauma Limb Reconstr. 2018;13(3):151–62.

    Article  Google Scholar 

  47. Ling BM, Wettstein R, Staub D, Schaefer DJ, Kalbermatten DF. The medial sural artery perforator flap: the first choice for soft-tissue reconstruction about the knee. J Bone Joint Surg Am. 2018;100(3):211–7.

    Article  PubMed  Google Scholar 

  48. Walton Z, Armstrong M, Traven S, Leddy L. Pedicled rotational medial and lateral gastrocnemius flaps: surgical technique. J Am Acad Orthop Surg. 2017;25(11):744–51.

    Article  PubMed  Google Scholar 

  49. Wright JK, Watkins RP. Use of the soleus muscle flap to cover part of the distal tibia. Plast Reconstr Surg. 1981;68(6):957–8.

    Article  CAS  PubMed  Google Scholar 

  50. Hallock GG. Sagittal split tibialis anterior muscle flap. Ann Plast Surg. 2002;49(1):39–43.

    Article  PubMed  Google Scholar 

  51. Durand S, Sita-Alb L, Ang S, Masquelet A-C. The flexor digitorum longus muscle flap for the reconstruction of soft-tissue defects in the distal third of the leg: anatomic considerations and clinical applications. Ann Plast Surg. 2013;71(5):595–9.

    Article  CAS  PubMed  Google Scholar 

  52. Arnold PG, Hodgkinson DJ. Extensor digitorum turn-down muscle flap. Plast Reconstr Surg. 1980;66(4):599–604.

    Article  CAS  PubMed  Google Scholar 

  53. Ramanujam CL, Stuto AC, Zgonis T. Use of local intrinsic muscle flaps for diabetic foot and ankle reconstruction: a systematic review. J Wound Care. 2018;27(Suppl 9):S22–8.

    Article  PubMed  Google Scholar 

  54. Jackson IT, Scheker L. Muscle and myocutaneous flaps on the lower limb. Injury. 1982;13(4):324–30.

    Article  CAS  PubMed  Google Scholar 

  55. Li B, Chang S-M, Du S-C, Zhuang L, Hu S-J. Distally based sural adipofascial turnover flap for coverage of complicated wound in the foot and ankle region. Ann Plast Surg. 2020;84(5):580–7.

    Article  CAS  PubMed  Google Scholar 

  56. Gu H, Xiong Z, Xu J, Li G, Wang C. Clinical and anatomical study of the distally based lesser saphenous veno-lateral sural neurocutaneous flap for lower extremity coverage. J Orthop Sci. 2013;18(5):740–8.

    Article  PubMed  Google Scholar 

  57. Rogers AD, Dos Passos G. Propeller flaps for lower-limb trauma. South Afr J Surg Suid-Afr Tydskr Vir Chir. 2014;52(4):105–7.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maurizio Calcagni .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Besmens, I.S., Calcagni, M. (2022). Rehabilitation: Soft Tissue Coverage. In: Pape, HC., Borrelli Jr., J., Moore, E.E., Pfeifer, R., Stahel, P.F. (eds) Textbook of Polytrauma Management . Springer, Cham. https://doi.org/10.1007/978-3-030-95906-7_43

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-95906-7_43

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-95905-0

  • Online ISBN: 978-3-030-95906-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics