Skip to main content

Management of Aseptic Malunions and Nonunions

  • Chapter
  • First Online:
Textbook of Polytrauma Management
  • 1553 Accesses

Abstract

Evaluation of aseptic non- or malunion requires thorough assessment of the patient and the bone. Treatment involves analysis of the potential causes, correction, or optimization of systemic medical or psychosocial contributors, consideration of non-operative methods, and carefully planned surgery. Occult infection should be sought with history, examination, and appropriate laboratory tests, such as erythrocyte sedimentation rate (ESR) and C-reactive protein (CRP). Endocrine and metabolic abnormalities are considered and treated. The nonunion should be classified as hypertrophic, atrophic, segmental, or synovial. Non-operative treatments include systemic teriparatide, local injections of growth factors or cells, functional bracing, and bone stimulators. Surgical treatment of malunion will involve osteotomy, which can be done by several techniques. Single-cut oblique osteotomy is a useful and reliable technique for diaphyseal malunions of long bones. Surgical treatment of nonunion will involve a combination of steps depending on the needs of the specific case: removal of hardware, debridement, correction of alignments, internal fixation, and bone grafting. Provision of increased stability by internal fixation with plates or nails is commonly required. Compression of the nonunion site is an important goal. Bone grafting is used for atrophic nonunions or in cases of bone loss. The use of a Reamer Irrigator Aspirator (RIA) to harvest graft from the intramedullary canal is a new method with some advocates.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Stucken C, Olszewski DC, Creevy WR, Murakami AM, Tornetta P. Preoperative diagnosis of infection in patients with nonunions. J Bone Joint Surg Am. 2013;95(15):1409–12.

    Article  PubMed  Google Scholar 

  2. Brinker MR, O’Connor DP, Monla YT, Earthman TP. Metabolic and endocrine abnormalities in patients with nonunions. J Orthop Trauma. 2007;21:557–70.

    Article  PubMed  Google Scholar 

  3. Nauth A, Lee M, Gardner MJ, Brinker MR, Warner SJ, Tornetta P III, Leucht P. Principles of nonunion management: state of the art. J Orthop Trauma. 2018;32:S52–7.

    Article  PubMed  Google Scholar 

  4. Reed C, Joyner HB, Simpson A. Human atrophic fracture non-unions are not avascular. J Orthop Res. 2002;20(3):593–9.

    Article  CAS  PubMed  Google Scholar 

  5. Reed AAC, Joyner CJ, Isefuku S, Brownlow HC, Simpson AHRW. Vascularity in a new model of atrophic nonunion. J Bone Joint Surg (Br). 2003;85-B:604–10.

    Article  Google Scholar 

  6. Whelan DB, Bhandari M, Stephen D, et al. Development of the radiographic union score for tibial fractures for the assessment of tibial fracture healing after intramedullary fixation. J Trauma. 2010;68(3):629–32. https://doi.org/10.1097/TA.0b013e3181a7c16d.

    Article  PubMed  Google Scholar 

  7. Leow JM, Clement ND, Tawonsawatruk T, Simpson CJ, Simpson AH. The radiographic union scale in tibial (RUST) fractures: reliability of the outcome measure at an independent centre. Bone Joint Res. 2016;5(4):116–21. https://doi.org/10.1302/2046-3758.54.2000628.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Litrenta J, Tornetta P III, Mehta S, et al. Determination of radiographic healing: an assessment of consistency using RUST and modified RUST in metadiaphyseal fractures. J Orthop Trauma. 2015;29(11):516–20. https://doi.org/10.1097/bot.0000000000000390.

    Article  PubMed  Google Scholar 

  9. United States Food and Drug Administration (USFDA), Office of Device Evaluation. Guidance Document for Industry and CDRH Staff for the Preparation of Investigational Device Exemptions and Premarket Approval Application for Bone Growth Stimulator Devices, 1988.

    Google Scholar 

  10. Bhandari M, Guyatt G, Walter S, Tornetta P, Schemitsch E, Swiontkowski M, Sanders D. Randomized trial of reamed and unreamed intramedullary nailing of tibial shaft fractures: by the Study to Prospectively Evaluate Reamed Intramedullary Nails in patients with tibia fractures (SPRINT) Investigators. J Bone Joint Surg Am. 2008;90(12):2567–78. https://doi.org/10.2106/JBJS.G.01694.

    Article  PubMed  Google Scholar 

  11. Morshed S. Current options for determining fracture union. Adv Med. 2014;2014:708574., 12 pages. https://doi.org/10.1155/2014/708574.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Bhattacharyya T, Bouchard KA, Phadke A, Meigs JB, Kassarjian A, Salamipour H. The accuracy of computed tomography for the diagnosis of tibial nonunion. J Bone Joint Surg Am. 2006;88:692–7.

    PubMed  Google Scholar 

  13. Gaston MS, Simpson AHRW. Inhibition of fracture healing. J Bone Joint Surg Br. 2007;89-B(12):1553–60.

    Article  Google Scholar 

  14. Lisowska B, Kosson D, Domaracka K. Positives and negatives of nonsteroidal anti-inflammatory drugs in bone healing: the effects of these drugs on bone repair. Drug Des Devel Ther. 2018;12:1809–14. https://doi.org/10.2147/DDDT.S164565.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Burd TA, Hughes MS, Anglen JO. Heterotopic ossification prophylaxis with indomethacin increases the risk of long-bone nonunion. J Bone Joint Surg Br. 2003;85:700–5.

    Article  CAS  PubMed  Google Scholar 

  16. Wheatley BM, Nappo KE, Christensen DL, Holman AM, Brooks DI, Potter BK. Effect of NSAIDs on bone healing rates: a meta-analysis. J Am Acad Orthop Surgeons. 2019;27(7):e330–6. https://doi.org/10.5435/JAAOS-D-17-00727.

    Article  Google Scholar 

  17. Hughes MS, Kazmier P, Burd T, Anglen J, Stoker AM, Kuroki K, Carson WL, Cook JL. Enhanced fracture and soft tissue healing by means of anabolic dietary supplementation. J Bone Joint Surg Am. 2006;88:2386–94.

    Article  PubMed  Google Scholar 

  18. Karpouzos A, Diamantis E, Farmaki P, Savvanis S, Troupis T. Nutritional aspects of bone health and fracture healing. J Osteoporos. 2017;2017:4218472. https://doi.org/10.1155/2017/4218472.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Jamdar J, Rao B, Netke S, et al. Reduction in tibial shaft fracture healing time with essential nutrient supplementation containing ascorbic acid, lysine, and proline [2]. J Altern Complement Med. 2004;10(6):915–6.

    PubMed  Google Scholar 

  20. Aaron RK, Boyan BD, Ciombor DM, Schwartz Z, Simon BJ. Stimulation of growth factor synthesis by electric and electromagnetic fields. Clin Orthop Relat Res. 2004;419:30–7.

    Article  Google Scholar 

  21. Anglen J. The clinical use of bone stimulators. J South Orthop Assoc. 2003;12(2):46–54.

    PubMed  Google Scholar 

  22. Akai M, Hayashi K. Effect of electrical stimulation on musculoskeletal systems; a meta-analysis of controlled clinical trials. Bioelectromagnetics. 2002;23:132–43.

    Article  PubMed  Google Scholar 

  23. Walker NA, Denegar CR, Preische J. Low-intensity pulsed ultrasound and pulsed electromagnetic field in the treatment of tibial fractures: a systematic review. J Athl Train. 2007;42:530–5.

    PubMed  PubMed Central  Google Scholar 

  24. Griffin Xavier L, Costa Matthew L, Parsons N, Smith N. Electromagnetic field stimulation for treating delayed union or non-union of long bone fractures in adults. Cochrane Database Syst Rev. 2011; https://doi.org/10.1002/14651858.CD008471.pub2/abstract&gt.

  25. Mollon B, da Silva V, Busse JW, Einhorn TA, Bhandari M. Electrical stimulation for long-bone fracture-healing: a meta-analysis of randomized controlled trials. J Bone Joint Surg Am. 2008;90:2322–30.

    Article  PubMed  Google Scholar 

  26. Aleem IS, Aleem I, Evaniew N, Busse JW, Yaszemski M, Agarwal A, Einhorn T, Bhandari M. Efficacy of electrical stimulators for bone healing: a meta-analysis of randomized sham-controlled trials. Sci Rep. 2016;6:31724. https://doi.org/10.1038/srep31724.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Sarmiento A, Burkhalter WE, Latta LL. Functional bracing in the treatment of delayed union and nonunion of the tibia. Int Orthop. 2003;27(1):26–9. https://doi.org/10.1007/s00264-002-0405-x.

    Article  PubMed  Google Scholar 

  28. Yonezu H, Mikami H, Oba K, Miyatake K, Takai M, Nitta A. Successful treatment with a weekly injection of teriparatide for the nonunion of a distal humerus fracture. Open J Orthop. 2017;7:173–9. https://doi.org/10.4236/ojo.2017.77019.

    Article  Google Scholar 

  29. Lee Y, Ha Y, Koo K. Teriparatide, a nonsurgical solution for femoral nonunion? A report of three cases. Osteoporos Int. 2012;23:2897–900. https://doi.org/10.1007/s00198-012-2172-x.

    Article  PubMed  Google Scholar 

  30. Connolly JF, Shindell R. Percutaneous marrow injection for an ununited tibia. Nebr Med J. 1986;71(4):105–7.

    CAS  PubMed  Google Scholar 

  31. Braly HL, O’Connor DP, Brinker MR. Percutaneous autologous bone marrow injection in the treatment of distal meta-diaphyseal tibial nonunions and delayed unions. J Orthop Trauma. 2013;27(9):527–33. https://doi.org/10.1097/BOT.0b013e31828bf077.

    Article  PubMed  Google Scholar 

  32. Li M, Meng Y, Li Y, Long A, Lu H, Yin P, Zhang L, Tang P. Multidirectional percutaneous drilling and autologous bone marrow injection for the treatment of femoral diaphyseal nonunions: a prospective interventional study. Ther Clin Risk Manag. 2019;15:1003–11. https://doi.org/10.2147/TCRM.S209393.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Sahu RL. Percutaneous autogenous bone marrow injection for delayed union or non-union of long bone fractures after internal fixation. Rev Bras Ortop. 2017;53(6):668–73. https://doi.org/10.1016/j.rboe.2017.09.004.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Ewais WM. Percutaneous autologous bone marrow injection as a substitute for operative grafting in delayed union and nonunion of long bone fractures. Egypt Orthop J. 2015;50:249–53.

    Article  Google Scholar 

  35. Wu J, Guo HX, Liu X, Li M, Cao YJ, Qu XY, Zhou H, Weng LQ. Percutaneous autologous bone marrow transplantation for the treatment of delayed union of limb bone in children. Ther Clin Risk Manag. 2018;14:219–24. https://doi.org/10.2147/TCRM.S146426.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Mishima H, Sugaya H, Yoshioka T, et al. The effect of combined therapy, percutaneous autologous concentrated bone marrow grafting and low-intensity pulsed ultrasound (LIPUS), on the treatment of non-unions. J Orthop Trauma. 2018;32(7):S2–3.

    Article  Google Scholar 

  37. Ravish VN, Bharath RG, Reddy MV. The role of platelet rich plasma in delayed union of long bones. Int J Orthop Sci. 2019;5(2):14–7.

    Google Scholar 

  38. Malhotra R, Kumar V, Garg B, et al. Role of autologous platelet-rich plasma in treatment of long-bone nonunions: a prospective study. Musculoskelet Surg. 2015;99(3):243–8. https://doi.org/10.1007/s12306-015-0378-8.

    Article  CAS  PubMed  Google Scholar 

  39. Say F, Türkeli E, Bülbül M. Is platelet-rich plasma injection an effective choice in cases of non-union? Acta Chir Orthop Traumatol Cechoslov. 2014;81(5):340–5.

    CAS  Google Scholar 

  40. Firoozabadi R, Alton T, Wenke J. Novel strategies for the diagnosis of posttraumatic infections in orthopaedic trauma patients. J Am Acad Orthop Surgeons. 2015;23(7):443–51.

    Article  Google Scholar 

  41. Moussa FW, Anglen JO, Gehrke JC, Christensen G, Simpson WA. The significance of positive cultures of orthopaedic fixation devices in the absence of clinical infection. Am J Orthop. 1997;26(9):617–20.

    CAS  PubMed  Google Scholar 

  42. Lynch JR, Taitsman LA, Barei DP, Nork SE. Femoral nonunion: risk factors and treatment options. J Am Acad Orthop Surg. 2008;16:88–97.

    Article  PubMed  Google Scholar 

  43. Swanson EA, Garrard EC, O’Connor DP, Brinker MR. Results of a systematic approach to exchange nailing for the treatment of aseptic tibial nonunions. J Orthop Trauma. 2015;29(1):28–35.

    Article  PubMed  Google Scholar 

  44. Hierholzer C, Friederichs J, Glowalla C, Woltmann A, Buhren V, Von Ruden C. Reamed intramedullary exchange nailing in the operative treatment of aseptic tibial shaft nonunion. Int Orthop. 2017;41:1647–53. https://doi.org/10.1007/s00264-016-3317-x.

    Article  PubMed  Google Scholar 

  45. Tsang ST, Mills LA, Frantzias J, Baren JP, Keating JF, Simpson AH. Exchange nailing for nonunion of diaphyseal fractures of the tibia: our results and an analysis of the risk factors for failure. Bone Joint J. 2016;98-B(4):534–41. https://doi.org/10.1302/0301-620X.98B4.34870.

    Article  CAS  PubMed  Google Scholar 

  46. Gardner M, Toro-Arbelaez J, Boraiah S, Lorich D, Helfet D. Surgical treatment and outcomes of extra articular proximal tibial nonunions. Arch Orthop Trauma Surg. 2007;128(8):833–9.

    Article  PubMed  Google Scholar 

  47. Helfet DL, Jupiter JB, Gasser S. Indirect reduction and tension-band plating of tibial non-union with deformity. J Bone Joint Surg Am. 1992;74(9):1286–97.

    Article  CAS  PubMed  Google Scholar 

  48. Anglen JO. Intertrochanteric osteotomy for failed internal fixation of femoral neck fracture. Clin Orthop Relat Res. 1997;341:175–82.

    Article  Google Scholar 

  49. Medda S, Jinnah A, Marquez-Lara A, Araiza E, Hasty E, Halvorson J, Pilson H. Valgus intertrochanteric osteotomy for femoral neck nonunion. J Orthop Trauma. 2019;33(Suppl 1):S26–7.

    Article  PubMed  Google Scholar 

  50. Banaszek D, Spence D, O’Brien P, Lefaivre K. Principles of valgus intertrochanteric osteotomy (VITO) after femoral neck nonunion. Adv Orthop. 2018;2018:5214273. https://doi.org/10.1155/2018/5214273.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Russell G, Graves M, Archdeacon M, Barei D, Brien G, Porter S. The clamshell osteotomy: a new technique to correct complex diaphyseal malunions surgical technique. J Bone Joint Surg Am. 2010;92(Suppl 1 Pt 2):158–75. https://doi.org/10.2106/JBJS.I.01328.

    Article  PubMed  Google Scholar 

  52. Sanders R, Anglen JO, Mark JB. Oblique osteotomy for the correction of tibial malunion. J Bone Joint Surg Am. 1995;77(2):240–6. https://doi.org/10.2106/00004623-199502000-00010.

    Article  CAS  PubMed  Google Scholar 

  53. Sangeorzan BP, Judd RP, Sangeorzan BJ. Mathematical analysis of single-cut osteotomy for complex long bone deformity. J Biomech. 1989;22(11–12):1271–8. https://doi.org/10.1016/0021-9290(89)90230-3.

    Article  CAS  PubMed  Google Scholar 

  54. Sanders R, DiPasquale T. A technique for obtaining bone graft. J Orthop Trauma. 1989;3(4):287–9.

    Article  CAS  PubMed  Google Scholar 

  55. Dawson J, Kiner D, Gardner W II, Swafford R, Nowotarski PJ. The Reamer–Irrigator–Aspirator as a device for harvesting bone graft compared with iliac crest bone graft: union rates and complications. J Orthop Trauma. 2014;28(10):584–90. https://doi.org/10.1097/BOT.0000000000000086.

    Article  PubMed  Google Scholar 

  56. Schmidmaier G, Herrmann S, Green J, Weber T, Scharfenberger A, Haas NP, Wildemann B. Quantitative assessment of growth factors in reaming aspirate, iliac crest, and platelet preparation. Bone. 2006;39:1156–63.

    Article  CAS  PubMed  Google Scholar 

  57. Harmon PH. A simplified surgical approach to the posterior tibia for bone grafting and fibular transference. J Bone Joint Surg. 1945;27:496–8.

    Google Scholar 

  58. Foster MJ, O’Toole RV, Manson TT. Treatment of tibial nonunion with posterolateral bone grafting. Injury. 2017;48(10):2242–7. https://doi.org/10.1016/j.injury.2017.05.001.

    Article  PubMed  Google Scholar 

  59. Ryzewicz M, Morgan SJ, Linford E, Thwing JI, de Resende GVP, Smith WR. Central bone grafting for nonunion of fractures of the tibia: a retrospective series. J Bone Joint Surg Br. 2009;91-B(4):522–9.

    Article  Google Scholar 

  60. Hak DJ. The use of osteoconductive bone graft substitutes in orthopaedic trauma. J Am Acad Orthop Surg. 2007;15:525–36.

    Article  PubMed  Google Scholar 

  61. Sohn H, Oh J. Review of bone graft and bone substitutes with an emphasis on fracture surgeries. Biomater Res. 2019;23:9. https://doi.org/10.1186/s40824-019-0157-y.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Tressler MA, Richards JE, Sofianos D, Comrie FK, Kregor PJ, Obremskey WT. Bone morphogenetic protein-2 compared to autologous iliac crest bone graft in the treatment of long bone nonunion. Orthopedics. 2011;34(12):e877–84. https://doi.org/10.3928/01477447-20111021-09.

    Article  PubMed  Google Scholar 

  63. Takemoto R, Forman J, Taormina DP, Egol KA. No advantage to rhBMP-2 in addition to autogenous graft for fracture nonunion. Orthopedics. 2014;37(6):e525–30. https://doi.org/10.3928/01477447-20140528-51.

    Article  PubMed  Google Scholar 

  64. Olesen UK, Eckardt H, Bosemark P, et al. The Masquelet technique of induced membrane for healing of bone defects. A review of 8 cases. Injury. 2015;46:S44–7.

    Article  PubMed  Google Scholar 

  65. Pelissier P, Martin D, Baudet J, Lepreux S, Masquelet A-C. Behaviour of cancellous bone graft placed in induced membranes. Br J Plast Surg. 2002;55:596–8.

    Article  PubMed  Google Scholar 

  66. Karger C, Kishi T, Schneider L, et al. Treatment of posttraumatic bone defects by the induced membrane technique. Orthop Traumatol Surg Res. 2012;98:97–102.

    Article  CAS  PubMed  Google Scholar 

  67. Morelli I, Drago L, George DA, Gallazzi E, Scarponi S, Romanò CL. Masquelet technique: myth or reality? A systematic review and meta-analysis. Injury. 2016;47:S68–76.

    Article  PubMed  Google Scholar 

  68. Paterson DC, Lewis GN, Cass CA. Treatment of delayed union and nonunion with an implanted direct current stimulator. Clin Orthop Relat Res. 1980;148:117–28.

    Article  Google Scholar 

  69. Hughes MA, Anglen JO. The use of implantable bone stimulators in nonunion treatment. Orthopedics. 2010;33(3):151. https://doi.org/10.3928/01477447-20100129-15.

    Article  Google Scholar 

  70. Martin JR, Vestermark G, Mullis B, Anglen J. A retrospective comparative analysis of the use of implantable bone stimulators in nonunions. J Surg Orthop Adv. 2017;26(3):128–33.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Anglen, J.O. (2022). Management of Aseptic Malunions and Nonunions. In: Pape, HC., Borrelli Jr., J., Moore, E.E., Pfeifer, R., Stahel, P.F. (eds) Textbook of Polytrauma Management . Springer, Cham. https://doi.org/10.1007/978-3-030-95906-7_41

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-95906-7_41

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-95905-0

  • Online ISBN: 978-3-030-95906-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics