Skip to main content

Spinal Cord Injury

  • Chapter
  • First Online:
Textbook of Polytrauma Management

Abstract

Spinal cord injury (SCI) is a devastating acute neurological condition characterized by loss of function and long-term impairment. The early assessment and documentation of the extent and level of neurological injury are of paramount importance to classify SCI, implement appropriate treatment strategies, and quantify neurological recovery over time. General management strategies for acute spinal cord injury consist of protection of airway and maintenance of oxygenation and spinal perfusion. Unstable spine fractures should be stabilized early, in conjunction with spinal cord decompression, if indicated, to allow unrestricted patient mobilization and decrease preventable complications. Once the spine is stabilized and decompressed, patients should be transferred to early rehabilitation at designated neurorehabilitation centers in order to optimize patient outcomes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Stahel PF. Initial management of patients with traumatic spinal cord injuries. Orthopedics. 2012;35(9):777–8.

    Article  PubMed  Google Scholar 

  2. Torregrossa F, Salli M, Grasso G. Emerging therapeutic strategies for traumatic spinal cord injury. World Neurosurg. 2020;140:591–601.

    Article  PubMed  Google Scholar 

  3. Khosravi S, Khayyamfar A, Shemshadi M, et al. Indicators of quality of care in individuals with traumatic spinal cord injury: a scoping review. Global Spine J. 2022;12(1):166–81.

    Google Scholar 

  4. Postma K, Bussmann JBJ, van Diemen T, et al. Physical activity and sedentary behavior from discharge to 1 year after inpatient rehabilitation in ambulatory people with spinal cord injury: a longitudinal cohort study. Arch Phys Med Rehabil. 2020;101(12):2061–70.

    Article  PubMed  Google Scholar 

  5. Stahel PF, Dorenkamp BC, Janssen ME. Spinal cord and spine. In: Feliciano DV, Mattox KL, Moore EE, editors. Trauma. 9th ed. New York, NY: McGraw-Hill; 2021. p. 545–59.

    Google Scholar 

  6. VanderHeiden TF, Stahel PF. Spinal cord injuries. In: Harken AH, Moore EE, editors. Abernathy’s surgical secrets. 7th ed. Philadelphia, PA: Elsevier; 2018. p. 94–100.

    Chapter  Google Scholar 

  7. Anjum A, Yazid MD, Fauzi Daud M, et al. Spinal Cord injury: pathophysiology, multimolecular interactions, and underlying recovery mechanisms. Int J Mol Sci. 2020;21(20):7533.

    Article  CAS  PubMed Central  Google Scholar 

  8. Segal JL. Immunoactivation and altered intercellular communication mediate the pathophysiology of spinal cord injury. Pharmacotherapy. 2005;25(2):145–56.

    Article  CAS  PubMed  Google Scholar 

  9. Jones TB, McDaniel EE, Popovich PG. Inflammatory-mediated injury and repair in the traumatically injured spinal cord. Curr Pharm Des. 2005;11(10):1223–36.

    Article  CAS  PubMed  Google Scholar 

  10. Taoka Y, Naruo M, Koyanagi E, Urakado M, Inoue M. Superoxide radicals play important roles in the pathogenesis of spinal cord injury. Paraplegia. 1995;33(8):450–3.

    CAS  PubMed  Google Scholar 

  11. Coyoy-Salgado A, Segura-Uribe JJ, Guerra-Araiza C, et al. The importance of natural antioxidants in the treatment of spinal cord injury in animal models: an overview. Oxidative Med Cell Longev. 2019;2019:3642491.

    Article  Google Scholar 

  12. Stahel PF, Flierl MA. Targeted modulation of the neuroinflammatory response after spinal cord injury: the ongoing quest for the "holy grail". Am J Pathol. 2010;177(6):2685–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Maikos JT, Shreiber DI. Immediate damage to the blood-spinal cord barrier due to mechanical trauma. J Neurotrauma. 2007;24(3):492–507.

    Article  PubMed  Google Scholar 

  14. Su D, Hooshmand MJ, Galvan MD, Nishi RA, Cummings BJ, Anderson AJ. Complement C6 deficiency exacerbates pathophysiology after spinal cord injury. Sci Rep. 2020;10(1):19500.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Stahel PF, Barnum SR. The role of the complement system in CNS inflammatory diseases. Expert Rev Clin Immunol. 2006;2(3):445–56.

    Article  CAS  PubMed  Google Scholar 

  16. Popovich PG. Immunological regulation of neuronal degeneration and regeneration in the injured spinal cord. Prog Brain Res. 2000;128:43–58.

    Article  CAS  PubMed  Google Scholar 

  17. McGraw J, Hiebert GW, Steeves JD. Modulating astrogliosis after neurotrauma. J Neurosci Res. 2001;63(2):109–15.

    Article  CAS  PubMed  Google Scholar 

  18. Stahel PF, VanderHeiden T, Finn MA. Management strategies for acute spinal cord injury: current options and future perspectives. Curr Opin Crit Care. 2012;18(6):651–60.

    Article  PubMed  Google Scholar 

  19. Shi Z, Yuan S, Shi L, et al. Programmed cell death in spinal cord injury pathogenesis and therapy. Cell Prolif. 2021:e12992.

    Google Scholar 

  20. Yao X, Sun C, Fan B, et al. Neurotropin exerts neuroprotective effects after spinal cord injury by inhibiting apoptosis and modulating cytokines. J Orthop Translat. 2021;26:74–83.

    Article  PubMed  Google Scholar 

  21. Meinberg EG, Agel J, Roberts CS, Karam MD, Kellam JF. Fracture and dislocation classification compendium-2018. J Orthop Trauma. 2018;32(Suppl. 1):S1–S170.

    Article  PubMed  Google Scholar 

  22. American College of Surgeons Committee on Trauma. Advanced Trauma Life Support (ATLS) student course manual. 10th ed. Chicago, IL: ACS-COT; 2018.

    Google Scholar 

  23. VanderHeiden T, Stahel PF. Spinal cord injury. In: McIntyre Jr R, Schulick RD, editors. Surgical decision making. 6th ed. St. Louis, MO: Elsevier; 2019. p. 442–6.

    Google Scholar 

  24. Nesathurai S. Steroids and spinal cord injury: revisiting the NASCIS 2 and NASCIS 3 trials. J Trauma. 1998;45(6):1088–93.

    Article  CAS  PubMed  Google Scholar 

  25. Hurlbert RJ. Methylprednisolone for acute spinal cord injury: an inappropriate standard of care. J Neurosurg. 2000;93(Suppl. 1):1–7.

    CAS  PubMed  Google Scholar 

  26. Edwards P, Arango M, Balica L, et al. Final results of MRC CRASH, a randomised placebo-controlled trial of intravenous corticosteroid in adults with head injury-outcomes at 6 months. Lancet. 2005;365(9475):1957–9.

    Article  PubMed  Google Scholar 

  27. Sauerland S, Maegele M. A CRASH landing in severe head injury. Lancet. 2004;364(9442):1291–2.

    Article  PubMed  Google Scholar 

  28. Liu Z, Yang Y, He L, et al. High-dose methylprednisolone for acute traumatic spinal cord injury: A meta-analysis. Neurology. 2019;93(9):e841–50.

    Article  CAS  PubMed  Google Scholar 

  29. Daverey A, Agrawal SK. Neuroprotective effects of Riluzole and Curcumin in human astrocytes and spinal cord white matter hypoxia. Neurosci Lett. 2020;738:135351.

    Article  CAS  PubMed  Google Scholar 

  30. Wu Q, Zhang Y, Zhang Y, et al. Riluzole improves functional recovery after acute spinal cord injury in rats and may be associated with changes in spinal microglia/macrophages polarization. Neurosci Lett. 2020;723:134829.

    Article  CAS  PubMed  Google Scholar 

  31. Tetreault LA, Zhu MP, Wilson JR, Karadimas SK, Fehlings MG. The impact of riluzole on neurobehavioral outcomes in preclinical models of traumatic and nontraumatic spinal cord injury: results from a systematic review of the literature. Global Spine J. 2020;10(2):216–29.

    Article  PubMed  Google Scholar 

  32. Fehlings MG, Badhiwala JH, Ahn H, et al. Safety and efficacy of riluzole in patients undergoing decompressive surgery for degenerative cervical myelopathy (CSM-Protect): a multicentre, double-blind, placebo-controlled, randomised, phase 3 trial. Lancet Neurol. 2021;20(2):98–106.

    Article  CAS  PubMed  Google Scholar 

  33. Stahel PF, Moore TA, Vanderheiden TF. Timing of tracheostomy after anterior cervical spine fixation. J Trauma Acute Care Surg. 2013;75(3):538–9.

    Article  PubMed  Google Scholar 

  34. Jones TS, Burlew CC, Johnson JL, et al. Predictors of the necessity for early tracheostomy in patients with acute cervical spinal cord injury: a 15-year experience. Am J Surg. 2015;209(2):363–8.

    Article  PubMed  Google Scholar 

  35. Avila MJ, Martirosyan NL, Hurlbert RJ, Dumont TM. Penetrating Spinal Cord Injury in civilians: analysis of a national database. World Neurosurg. 2021;146:e985–e92.

    Google Scholar 

  36. Platz A, Stahel PF, Kossmann T, Trentz O. Civilian gunshot injuries to the spine: diagnostic procedures and therapeutic concepts. Eur J Trauma. 2001;27:104–9.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Stahel, P.F., Chatain, G.P., Finn, M.A. (2022). Spinal Cord Injury. In: Pape, HC., Borrelli Jr., J., Moore, E.E., Pfeifer, R., Stahel, P.F. (eds) Textbook of Polytrauma Management . Springer, Cham. https://doi.org/10.1007/978-3-030-95906-7_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-95906-7_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-95905-0

  • Online ISBN: 978-3-030-95906-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics