Skip to main content

The Inflammatory and Barrier Response After Polytrauma

  • Chapter
  • First Online:
Textbook of Polytrauma Management
  • 1580 Accesses

Abstract

Polytrauma results in a rapid immune response. The exposed molecular danger of both damaged host cells and microbes leads to the activation of fluid and cellular phase immune systems, including the coagulation system, complement cascade and leukocytes. The resultant compartmentalised and systemic inflammatory response can lead to barrier dysfunction, which in turn exacerbates to reduction in cellular oxygen support and metabolic waste clearance. As main risk factors, haemorrhagic shock with hypoxic conditions are major drivers of the inflammatory immune response and the associated barrier breakdown. These changes contribute to the development of cellular disruption and multiple organ dysfunction syndrome, and when prolonged, to additional structural damage and a poor outcome. The application of real-time clinical immune monitoring should be considered as a mandatory component for future immunomodulatory therapeutic strategies as a promising integral part of surgical and anaesthesiological management to improve the quality of life and outcome after polytrauma.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Huber-Lang M, Lambris JD, Ward PA. Innate immune responses to trauma. Nat Immunol. 2018;19(4):327–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Matzinger P. The danger model: a renewed sense of self. Science. 2002;296(5566):301–5.

    Article  CAS  PubMed  Google Scholar 

  3. Lord JM, Midwinter MJ, Chen Y-F, Belli A, Brohi K, Kovacs EJ, et al. The systemic immune response to trauma: an overview of pathophysiology and treatment. Lancet. 2014;384(9952):1455–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Tracey KJ. Reflex control of immunity. Nat Rev Immunol. 2009;9(6):418–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Ekdahl KN, Teramura Y, Hamad OA, Asif S, Duehrkop C, Fromell K, et al. Dangerous liaisons: complement, coagulation, and kallikrein/kinin cross-talk act as a linchpin in the events leading to thromboinflammation. Immunol Rev. 2016;274(1):245–69.

    Article  CAS  PubMed  Google Scholar 

  6. Jackson SP, Darbousset R, Schoenwaelder SM. Thromboinflammation: challenges of therapeutically targeting coagulation and other host defense mechanisms. Blood. 2019;133(9):906–18.

    Article  CAS  PubMed  Google Scholar 

  7. Huber-Lang MS, Ignatius A, Köhl J, Mannes M, Braun CK. Complement in trauma-traumatised complement? Br J Pharmacol. 2021;178:2863–79.

    Article  CAS  PubMed  Google Scholar 

  8. Ganter MT, Brohi K, Cohen MJ, Shaffer LA, Walsh MC, Stahl GL, et al. Role of the alternative pathway in the early complement activation following major trauma. Shock. 2007;28(1):29–34.

    Article  CAS  PubMed  Google Scholar 

  9. Zhang Q, Itagaki K, Hauser CJ. Mitochondrial DNA is released by shock and activates neutrophils via p38 map kinase. Shock. 2010;34(1):55–9.

    Article  PubMed  Google Scholar 

  10. Brinkmann CR, Jensen L, Dagnæs-Hansen F, Holm IE, Endo Y, Fujita T, et al. Mitochondria and the lectin pathway of complement. J Biol Chem. 2013;288(12):8016–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kanse SM, Gallenmueller A, Zeerleder S, Stephan F, Rannou O, Denk S, et al. Factor VII-activating protease is activated in multiple trauma patients and generates anaphylatoxin C5a. J Immunol. 2012;188(6):2858–65.

    Article  CAS  PubMed  Google Scholar 

  12. Kenawy HI, Boral I, Bevington A. Complement-coagulation cross-talk: a potential mediator of the physiological activation of complement by low pH. Front Immunol. 2015;6:215.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Kondo Y, Ledderose C, Slubowski CJ, Fakhari M, Sumi Y, Sueyoshi K, et al. Frontline science: Escherichia coli use LPS as decoy to impair neutrophil chemotaxis and defeat antimicrobial host defense. J Leukoc Biol. 2019;106(6):1211–9.

    Article  CAS  PubMed  Google Scholar 

  14. Netea MG, Balkwill F, Chonchol M, Cominelli F, Donath MY, Giamarellos-Bourboulis EJ, et al. A guiding map for inflammation. Nat Immunol. 2017;18(8):826–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Billiar TR, Vodovotz Y. Time for trauma immunology. PLoS Med. 2017;14(7):e1002342.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Cekic C, Linden J. Purinergic regulation of the immune system. Nat Rev Immunol. 2016;16(3):177–92.

    Article  CAS  PubMed  Google Scholar 

  17. Foley NM, Wang J, Redmond HP, Wang JH. Current knowledge and future directions of TLR and NOD signaling in sepsis. Mil Med Res. 2015;2:1.

    PubMed  PubMed Central  Google Scholar 

  18. Hayward JA, Mathur A, Ngo C, Man SM. Cytosolic recognition of microbes and pathogens: inflammasomes in action. Microbiol Mol Biol Rev. 2018;82(4)

    Google Scholar 

  19. Broz P, Dixit VM. Inflammasomes: mechanism of assembly, regulation and signalling. Nat Rev Immunol. 2016;16(7):407–20.

    Article  CAS  PubMed  Google Scholar 

  20. Hietbrink F, Koenderman L, Rijkers G, Leenen L. Trauma: the role of the innate immune system. World J Emerg Surg. 2006;1:15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Burk A-M, Martin M, Flierl MA, Rittirsch D, Helm M, Lampl L, et al. Early complementopathy after multiple injuries in humans. Shock. 2012;37(4):348–54.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Hecke F, Schmidt U, Kola A, Bautsch W, Klos A, Köhl J. Circulating complement proteins in multiple trauma patients—correlation with injury severity, development of sepsis, and outcome. Crit Care Med. 1997;25(12):2015–24.

    Article  CAS  PubMed  Google Scholar 

  23. Vollrath JT, Marzi I, Herminghaus A, Lustenberger T, Relja B. Post-traumatic sepsis is associated with increased C5a and decreased TAFI levels. J Clin Med. 2020;9(4)

    Google Scholar 

  24. Helling H, Stephan B, Pindur G. Coagulation and complement system in critically ill patients. Clin Hemorheol Microcirc. 2015;61(2):185–93.

    Article  CAS  PubMed  Google Scholar 

  25. Gerard C. Complement C5a in the sepsis syndrome—too much of a good thing? N Engl J Med. 2003;348(2):167–9.

    Article  CAS  PubMed  Google Scholar 

  26. Ward PA. The dark side of C5a in sepsis. Nat Rev Immunol. 2004;4(2):133–42.

    Article  CAS  PubMed  Google Scholar 

  27. Wood AJT, Vassallo A, Summers C, Chilvers ER, Conway-Morris A. C5a anaphylatoxin and its role in critical illness-induced organ dysfunction. Eur J Clin Invest. 2018;48(12):e13028.

    Article  PubMed  Google Scholar 

  28. Rittirsch D, Redl H, Huber-Lang M. Role of complement in multiorgan failure. Clin Dev Immunol. 2012;2012:962927.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Hecke F, Schmidt U, Kola A, Bautsch W, Klos A, Köhl J. Circulating complement proteins in multiple trauma patients—correlation with injury severity, development of sepsis, and outcome. Crit Care Med. 1997;25(12):2015–24.

    Article  CAS  PubMed  Google Scholar 

  30. Coulthard LG, Woodruff TM. Is the complement activation product C3a a proinflammatory molecule? Re-evaluating the evidence and the myth. J Immunol. 2015;194(8):3542–8.

    Article  CAS  PubMed  Google Scholar 

  31. Xiao W, Mindrinos MN, Seok J, Cuschieri J, Cuenca AG, Gao H, et al. A genomic storm in critically injured humans. J Exp Med. 2011;208(13):2581–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Barrett CD, Hsu AT, Ellson CD, Miyazawa BY, Kong Y-W, Greenwood JD, et al. Blood clotting and traumatic injury with shock mediates complement-dependent neutrophil priming for extracellular ROS, ROS-dependent organ injury and coagulopathy. Clin Exp Immunol. 2018;194(1):103–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. McIlroy DJ, Jarnicki AG, Au GG, Lott N, Smith DW, Hansbro PM, et al. Mitochondrial DNA neutrophil extracellular traps are formed after trauma and subsequent surgery. J Crit Care. 2014;29(6):1133.e1–5.

    Article  CAS  Google Scholar 

  34. Paunel-Görgülü A, Kirichevska T, Lögters T, Windolf J, Flohé S. Molecular mechanisms underlying delayed apoptosis in neutrophils from multiple trauma patients with and without sepsis. Mol Med. 2012;18:325–35.

    Article  PubMed  Google Scholar 

  35. Spijkerman R, Hesselink L, Bongers S, van Wessem KJP, Vrisekoop N, Hietbrink F, et al. Point-of-care analysis of neutrophil phenotypes: a first step toward immuno-based precision medicine in the trauma ICU. Crit Care Explor. 2020;2(7):e0158.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Stengel D, Bauwens K, Keh D, Gerlach H, Ekkernkamp A, Tauber R, et al. Prognostic value of an early soluble L-selectin (sCD62L) assay for risk assessment in blunt multiple trauma: a metaanalysis. Clin Chem. 2005;51(1):16–24.

    Article  CAS  PubMed  Google Scholar 

  37. Mortaz E, Zadian SS, Shahir M, Folkerts G, Garssen J, Mumby S, et al. Does neutrophil phenotype predict the survival of trauma patients? Front Immunol. 2019;10:2122.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Wiegner R, Chakraborty S, Huber-Lang M. Complement-coagulation crosstalk on cellular and artificial surfaces. Immunobiology. 2016;221(10):1073–9.

    Article  CAS  PubMed  Google Scholar 

  39. Wood AJ, Vassallo AM, Ruchaud-Sparagano M-H, Scott J, Zinnato C, Gonzalez-Tejedo C, et al. C5a impairs phagosomal maturation in the neutrophil through phosphoproteomic remodeling. JCI Insight. 2020;5(15)

    Google Scholar 

  40. Denk S, Neher MD, Messerer DAC, Wiegner R, Nilsson B, Rittirsch D, et al. Complement C5a functions as a master switch for the pH balance in neutrophils exerting fundamental immunometabolic effects. J Immunol. 2017;198(12):4846–54.

    Article  CAS  PubMed  Google Scholar 

  41. Karasu E, Demmelmaier J, Kellermann S, Holzmann K, Köhl J, Schmidt CQ, et al. Complement C5a induces Pro-inflammatory microvesicle shedding in severely injured patients. Front Immunol. 2020;11:1789.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Faist E, Ninnemann JL, Green DR. Immune consequences of trauma, shock, and sepsis: mechanisms and therapeutic approaches. Berlin, Heidelberg: Springer Berlin Heidelberg; 1989.

    Book  Google Scholar 

  43. Tschoeke SK, Ertel W. Immunoparalysis after multiple trauma. Injury. 2007;38(12):1346–57.

    Article  PubMed  Google Scholar 

  44. Spolarics Z, Siddiqi M, Siegel JH, Garcia ZC, Stein DS, Denny T, et al. Depressed interleukin-12-producing activity by monocytes correlates with adverse clinical course and a shift toward Th2-type lymphocyte pattern in severely injured male trauma patients. Crit Care Med. 2003;31(6):1722–9.

    Article  CAS  PubMed  Google Scholar 

  45. Menges T, Engel J, Welters I, Wagner RM, Little S, Ruwoldt R, et al. Changes in blood lymphocyte populations after multiple trauma: association with posttraumatic complications. Crit Care Med. 1999;27(4):733–40.

    Article  CAS  PubMed  Google Scholar 

  46. De AK, Kodys KM, Pellegrini J, Yeh B, Furse RK, Bankey P, et al. Induction of global anergy rather than inhibitory Th2 lymphokines mediates posttrauma T cell immunodepression. Clin Immunol. 2000;96(1):52–66.

    Article  CAS  PubMed  Google Scholar 

  47. Ertel W, Faist E, Nestle C, Schuebel I, Storck M, Schildberg FW. Dynamics of immunoglobulin synthesis after major trauma. Influence of recombinant lymphokines. Arch Surg. 1989;124(12):1437–41; discussion 1441-2.

    Article  CAS  PubMed  Google Scholar 

  48. Faist E, Ertel W, Baker CC, Heberer G. Terminal B-cell maturation and immunoglobulin (Ig) synthesis in vitro in patients with major injury. J Trauma. 1989;29(1):2–9.

    Article  CAS  PubMed  Google Scholar 

  49. Messerer DAC, Halbgebauer R, Nilsson B, Pavenstädt H, Radermacher P, Huber-Lang M. Immunopathophysiology of trauma-related acute kidney injury. Nat Rev Nephrol. 2021;17:91–111.

    Article  CAS  PubMed  Google Scholar 

  50. Gebhard F, Pfetsch H, Steinbach G, Strecker W, Kinzl L, Brückner UB. Is interleukin 6 an early marker of injury severity following major trauma in humans? Arch Surg. 2000;135(3):291–5.

    Article  CAS  PubMed  Google Scholar 

  51. Pape HC, Schmidt RE, Rice J, van Griensven M, das Gupta R, Krettek C, et al. Biochemical changes after trauma and skeletal surgery of the lower extremity: quantification of the operative burden. Crit Care Med. 2000;28(10):3441–8.

    Article  CAS  PubMed  Google Scholar 

  52. Pape H-C, Grimme K, van Griensven M, Sott AH, Giannoudis P, Morley J, et al. Impact of intramedullary instrumentation versus damage control for femoral fractures on immunoinflammatory parameters: prospective randomized analysis by the EPOFF Study Group. J Trauma. 2003;55(1):7–13.

    Article  PubMed  Google Scholar 

  53. Kleinveld DJ, Tuip-de Boer AM, Hollmann MW, Juffermans NP. Early increase in anti-inflammatory biomarkers is associated with the development of multiple organ dysfunction syndrome in severely injured trauma patients. Trauma Surg Acute Care Open. 2019;4(1):e000343.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Gaski GE, Metzger C, McCarroll T, Wessel R, Adler J, Cutshall A, et al. Early immunologic response in multiply injured patients with orthopaedic injuries is associated with organ dysfunction. J Orthop Trauma. 2019;33(5):220–8.

    Article  PubMed  Google Scholar 

  55. Easton R, Balogh ZJ. Peri-operative changes in serum immune markers after trauma: a systematic review. Injury. 2014;45(6):934–41.

    Article  PubMed  Google Scholar 

  56. van den Bossche WBL, Rykov K, Teodosio C, ten Have BLEF, Knobben BAS, Sietsma MS, et al. Flow cytometric assessment of leukocyte kinetics for the monitoring of tissue damage. Clin Immunol. 2018;197:224–30.

    Article  PubMed  Google Scholar 

  57. Visser T, Pillay J, Koenderman L, Leenen LPH. Postinjury immune monitoring: can multiple organ failure be predicted? Curr Opin Crit Care. 2008;14(6):666–72.

    Article  PubMed  Google Scholar 

  58. Seshadri A, Brat GA, Yorkgitis BK, Keegan J, Dolan J, Salim A, et al. Phenotyping the immune response to trauma: a multiparametric systems immunology approach. Crit Care Med. 2017;45(9):1523–30.

    Article  PubMed  Google Scholar 

  59. Lumsdaine W, Easton RM, Lott NJ, White A, Malmanche TL, Lemmert K, et al. Neutrophil oxidative burst capacity for peri-operative immune monitoring in trauma patients. Injury. 2014;45(8):1144–8.

    Article  PubMed  Google Scholar 

  60. Hesselink L, Heeres M, Paraschiakos F, ten Berg M, Huisman A, Hoefer IE, et al. A rise in neutrophil cell size precedes organ dysfunction after trauma. Shock. 2019;51(4):439–46.

    Article  CAS  PubMed  Google Scholar 

  61. Halbgebauer R, Kellermann S, Schäfer F, Weckbach S, Weiss M, Barth E, et al. Functional immune monitoring in severely injured patients-a pilot study. Scand J Immunol. 2020;91(2):e12837.

    Article  PubMed  Google Scholar 

  62. Chéron A, Monneret G, Landelle C, Floccard B, Allaouchiche B. Diminution de l’expression monocytaire de HLA-DR et risque d’infection hospitalière. Ann Fr Anesth Reanim. 2010;29(5):368–76.

    Article  PubMed  Google Scholar 

  63. Morris AC, Brittan M, Wilkinson TS, McAuley DF, Antonelli J, McCulloch C, et al. C5a-mediated neutrophil dysfunction is RhoA-dependent and predicts infection in critically ill patients. Blood. 2011;117(19):5178–88.

    Article  CAS  PubMed  Google Scholar 

  64. Paffrath T, Lefering R, Flohé S. How to define severely injured patients?—An Injury Severity Score (ISS) based approach alone is not sufficient. Injury. 2014;45(Suppl 3):S64–9.

    Article  PubMed  Google Scholar 

  65. Wen Y, Yang H, Wei W, Shan-shou L. The outcomes of 1120 severe multiple trauma patients with hemorrhagic shock in an emergency department: a retrospective study. BMC Emerg Med. 2013;13(Suppl 1):S6.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Halbgebauer R, Braun CK, Denk S, Mayer B, Cinelli P, Radermacher P, et al. Hemorrhagic shock drives glycocalyx, barrier and organ dysfunction early after polytrauma. J Crit Care. 2018;44:229–37.

    Article  PubMed  Google Scholar 

  67. Ostrowski SR, Henriksen HH, Stensballe J, Gybel-Brask M, Cardenas JC, Baer LA, et al. Sympathoadrenal activation and endotheliopathy are drivers of hypocoagulability and hyperfibrinolysis in trauma: a prospective observational study of 404 severely injured patients. J Trauma Acute Care Surg. 2017;82(2):293–301.

    Article  PubMed  Google Scholar 

  68. Ostrowski SR, Johansson PI. Endothelial glycocalyx degradation induces endogenous heparinization in patients with severe injury and early traumatic coagulopathy. J Trauma Acute Care Surg. 2012;73(1):60–6.

    Article  CAS  PubMed  Google Scholar 

  69. Denk S, Weckbach S, Eisele P, Braun CK, Wiegner R, Ohmann JJ, et al. Role of hemorrhagic shock in experimental polytrauma. Shock. 2018;49(2):154–63.

    Article  PubMed  Google Scholar 

  70. Vajdovich P. Free radicals and antioxidants in inflammatory processes and ischemia-reperfusion injury. Vet Clin North Am Small Anim Pract. 2008;38(1):31–123, v.

    Article  PubMed  Google Scholar 

  71. Remick DG, Villarete L. Regulation of cytokine gene expression by reactive oxygen and reactive nitrogen intermediates. J Leukoc Biol. 1996;59(4):471–5.

    Article  CAS  PubMed  Google Scholar 

  72. Sasaki M, Joh T. Oxidative stress and ischemia-reperfusion injury in gastrointestinal tract and antioxidant, protective agents. J Clin Biochem Nutr. 2007;40(1):1–12.

    Article  CAS  PubMed  Google Scholar 

  73. Frith D, Goslings JC, Gaarder C, Maegele M, Cohen MJ, Allard S, et al. Definition and drivers of acute traumatic coagulopathy: clinical and experimental investigations. J Thromb Haemost. 2010;8(9):1919–25.

    Article  CAS  PubMed  Google Scholar 

  74. Frith D, Davenport R, Brohi K. Acute traumatic coagulopathy. Curr Opin Anaesthesiol. 2012;25(2):229–34.

    Article  PubMed  Google Scholar 

  75. Ehrnthaller C, Schultze A, Wakileh G, Neff T, Hafner S, Radermacher P, et al. Hemorrhagic shock induces renal complement activation. Eur J Trauma Emerg Surg. 2019;

    Google Scholar 

  76. Kutcher ME, Redick BJ, McCreery RC, Crane IM, Greenberg MD, Cachola LM, et al. Characterization of platelet dysfunction after trauma. J Trauma Acute Care Surg. 2012;73(1):13–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Bozorgi F, Khatir IG, Ghanbari H, Jahanian F, Arabi M, Ahidashti HA, et al. Investigation of frequency of the lethal triad and its 24 hours prognostic value among patients with multiple traumas. Open Access Maced J Med Sci. 2019;7(6):962–6.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Mikhail J. The trauma triad of death: hypothermia, acidosis, and coagulopathy. AACN Clin Issues. 1999;10(1):85–94.

    Article  CAS  PubMed  Google Scholar 

  79. Dickmann P, Bauer M. Sepsis 2019—neue Trends und Implikationen für die Behandlung Schwerverletzter. Z Orthop Unfall. 2020;158(1):81–9.

    PubMed  Google Scholar 

  80. Cauwels A, Rogge E, Vandendriessche B, Shiva S, Brouckaert P. Extracellular ATP drives systemic inflammation, tissue damage and mortality. Cell Death Dis. 2014;5:e1102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Denk S, Wiegner R, Hönes FM, Messerer DAC, Radermacher P, Weiss M, et al. Early detection of junctional adhesion molecule-1 (JAM-1) in the circulation after experimental and clinical polytrauma. Mediators Inflamm. 2015;2015:463950.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Johansson PI, Stensballe J, Rasmussen LS, Ostrowski SR. A high admission syndecan-1 level, a marker of endothelial glycocalyx degradation, is associated with inflammation, protein C depletion, fibrinolysis, and increased mortality in trauma patients. Ann Surg. 2011;254(2):194–200.

    Article  PubMed  Google Scholar 

  83. Messerer DAC, Denk S, Föhr KJ, Halbgebauer R, Braun CK, Hönes F, et al. Complement C5a alters the membrane potential of neutrophils during hemorrhagic shock. Mediators Inflamm. 2018;2018:2052356.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Patel JJ, Rosenthal MD, Miller KR, Martindale RG. The gut in trauma. Curr Opin Crit Care. 2016;22(4):339–46.

    Article  PubMed  Google Scholar 

  85. Hotchkiss RS, Schmieg RE, Swanson PE, Freeman BD, Tinsley KW, Cobb JP, et al. Rapid onset of intestinal epithelial and lymphocyte apoptotic cell death in patients with trauma and shock. Crit Care Med. 2000;28(9):3207–17.

    Article  CAS  PubMed  Google Scholar 

  86. Charbonney E, Tsang JY, Li Y, Klein D, Duque P, Romaschin A, et al. Endotoxemia following multiple trauma: risk factors and prognostic implications. Crit Care Med. 2016;44(2):335–41.

    Article  PubMed  Google Scholar 

  87. Moore FA, Moore EE, Poggetti R, McAnena OJ, Peterson VM, Abernathy CM, et al. Gut bacterial translocation via the portal vein: a clinical perspective with major torso trauma. J Trauma. 1991;31(5):629–36; discussion 636-8.

    Article  CAS  PubMed  Google Scholar 

  88. Armacki M, Trugenberger AK, Ellwanger AK, Eiseler T, Schwerdt C, Bettac L, et al. Thirty-eight-negative kinase 1 mediates trauma-induced intestinal injury and multi-organ failure. J Clin Invest. 2018;128(11):5056–72.

    Article  PubMed  PubMed Central  Google Scholar 

  89. Pan P, Song Y, Du X, Bai L, Hua X, Xiao Y, et al. Intestinal barrier dysfunction following traumatic brain injury. Neurol Sci. 2019;40(6):1105–10.

    Article  PubMed  Google Scholar 

  90. Levy G, Fishman JE, Xu D, Chandler BTJ, Feketova E, Dong W, et al. Parasympathetic stimulation via the vagus nerve prevents systemic organ dysfunction by abrogating gut injury and lymph toxicity in trauma and hemorrhagic shock. Shock. 2013;39(1):39–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Li Z, Li J, Zhang S, Chen G, Chi S, Li X, et al. Metabolomics analysis of gut barrier dysfunction in a trauma-hemorrhagic shock rat model. Biosci Rep. 2019;39(1)

    Google Scholar 

  92. Schmid-Schönbein GW. The autodigestion hypothesis: proteolytic receptor cleavage in rheological and cardiovascular cell dysfunction1. Biorheology. 2016;53(5-6):179–91.

    Article  PubMed  Google Scholar 

  93. Niesler U, Palmer A, Radermacher P, Huber-Lang MS. Role of alveolar macrophages in the inflammatory response after trauma. Shock. 2014;42(1):3–10.

    Article  CAS  PubMed  Google Scholar 

  94. Grommes J, Soehnlein O. Contribution of neutrophils to acute lung injury. Mol Med. 2011;17(3-4):293–307.

    Article  CAS  PubMed  Google Scholar 

  95. Herold S, Mayer K, Lohmeyer J. Acute lung injury: how macrophages orchestrate resolution of inflammation and tissue repair. Front Immunol. 2011;2:65.

    Article  PubMed  PubMed Central  Google Scholar 

  96. Robb CT, Regan KH, Dorward DA, Rossi AG. Key mechanisms governing resolution of lung inflammation. Semin Immunopathol. 2016;38(4):425–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Koeppen M, McNamee EN, Brodsky KS, Aherne CM, Faigle M, Downey GP, et al. Detrimental role of the airway mucin Muc5ac during ventilator-induced lung injury. Mucosal Immunol. 2013;6(4):762–75.

    Article  CAS  PubMed  Google Scholar 

  98. Aufmkolk M, Fischer R, Voggenreiter G, Kleinschmidt C, Schmit-Neuerburg KP, Obertacke U. Local effect of lung contusion on lung surfactant composition in multiple trauma patients. Crit Care Med. 1999;27(8):1441–6.

    Article  CAS  PubMed  Google Scholar 

  99. Raghavendran K, Notter RH, Davidson BA, Helinski JD, Kunkel SL, Knight PR. Lung contusion: inflammatory mechanisms and interaction with other injuries. Shock. 2009;32(2):122–30.

    Article  PubMed  PubMed Central  Google Scholar 

  100. Whitsett JA, Alenghat T. Respiratory epithelial cells orchestrate pulmonary innate immunity. Nat Immunol. 2015;16(1):27–35.

    Article  CAS  PubMed  Google Scholar 

  101. Rasid O, Cavaillon J-M. Compartment diversity in innate immune reprogramming. Microbes Infect. 2018;20(3):156–65.

    Article  CAS  PubMed  Google Scholar 

  102. Karasu E, Nilsson B, Köhl J, Lambris JD, Huber-Lang M. Targeting complement pathways in polytrauma- and sepsis-induced multiple-organ dysfunction. Front Immunol. 2019;10:543.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Markus Huber-Lang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Karasu, E., Huber-Lang, M. (2022). The Inflammatory and Barrier Response After Polytrauma. In: Pape, HC., Borrelli Jr., J., Moore, E.E., Pfeifer, R., Stahel, P.F. (eds) Textbook of Polytrauma Management . Springer, Cham. https://doi.org/10.1007/978-3-030-95906-7_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-95906-7_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-95905-0

  • Online ISBN: 978-3-030-95906-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics