Skip to main content

A ML-Based System for Predicting Flight Coordinates Considering ADS-B GPS Data: Problems and System Improvement

  • Conference paper
  • First Online:
Advances in Internet, Data & Web Technologies (EIDWT 2022)

Abstract

The development of a low-cost aircraft surveillance system based on Automatic Dependent Surveillance-Broadcast (ADS-B) has attracted significant attention and there are many applications. The ADS-B signals have many data about the aircraft and we are particularly interested in the idea of utilizing this data to develop flight predictions. In this paper, we present an ML-based system for predicting three-dimensional flight location coordinates by using route classification from ADS-B. The evaluation results show that our proposed system can predict three-dimensional flight coordinates, but the accuracy is not high because of the GPS fluctuations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Cai, Q., Alam, S., Duong, V.N.: A spatial-temporal network perspective for the propagation dynamics of air traffic delays. Engineering 7(4), 452–464 (2021). https://www.sciencedirect.com/science/article/pii/S2095809921000485

  2. Choi, S., Kim, Y.J., Briceno, S., Mavris, D.: Prediction of weather-induced airline delays based on machine learning algorithms. In: 2016 IEEE/AIAA 35th Digital Avionics Systems Conference (DASC), pp. 1–6 (2016)

    Google Scholar 

  3. Duan, Y., Yisheng, L.V., Wang, F.Y.: Travel time prediction with LSTM neural network. In: 2016 IEEE 19th International Conference on Intelligent Transportation Systems (ITSC), pp. 1053–1058 (2016)

    Google Scholar 

  4. Edrich, M., Schroeder, A.: Design, implementation and test of a multiband multistatic passive radar system for operational use in airspace surveillance. In: 2014 IEEE Radar Conference, pp. 12–16 (2014)

    Google Scholar 

  5. Gui, G., Liu, F., Sun, J., Yang, J., Zhou, Z., Zhao, D.: Flight delay prediction based on aviation big data and machine learning. IEEE Trans. Veh. Technol. 69(1), 140–150 (2020)

    Article  Google Scholar 

  6. Honda, J., Otsuyama, T., Watanabe, M., Makita, Y.: Study on multistatic primary surveillance radar using DTTB signal delays. In: 2018 International Conference on Radar (RADAR), pp. 1–4 (2018)

    Google Scholar 

  7. Honda, J., Otsuyama, T.: Feasibility study on aircraft positioning by using ISDB-T signal delay. IEEE Antennas Wirel. Propag. Lett. 15, 1787–1790 (2016)

    Article  Google Scholar 

  8. Kim, Y.J., Choi, S., Briceno, S., Mavris, D.: A deep learning approach to flight delay prediction. In: 2016 IEEE/AIAA 35th Digital Avionics Systems Conference (DASC), pp. 1–6 (2016)

    Google Scholar 

  9. Martínez-Prieto, M.A., Bregon, A., García-Miranda, I., Álvarez Esteban, P.C., Díaz, F., Scarlatti, D.: Integrating flight-related information into a (big) data lake. In: 2017 IEEE/AIAA 36th Digital Avionics Systems Conference (DASC), pp. 1–10 (2017)

    Google Scholar 

  10. Matsuo, K., Ikeda, M., Barolli, L.: A machine learning approach for predicting 2D aircraft position coordinates. In: Barolli, L., Chen, H.-C., Enokido, T. (eds.) NBiS 2021. LNNS, vol. 313, pp. 306–311. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-84913-9_30

    Chapter  Google Scholar 

  11. Moreira, L., Dantas, C., Oliveira, L., Soares, J., Ogasawara, E.: On evaluating data preprocessing methods for machine learning models for flight delays. In: 2018 International Joint Conference on Neural Networks (IJCNN), pp. 1–8 (2018)

    Google Scholar 

  12. Nijsure, Y.A., Kaddoum, G., Gagnon, G., Gagnon, F., Yuen, C., Mahapatra, R.: Adaptive air-to-ground secure communication system based on ADS-B and wide-area multilateration. IEEE Trans. Veh. Technol. 65(5), 3150–3165 (2016)

    Article  Google Scholar 

  13. O’Hagan, D.W., Baker, C.J.: Passive bistatic radar (PBR) using FM radio illuminators of opportunity. In: 2008 New Trends for Environmental Monitoring Using Passive Systems, pp. 1–6 (2008)

    Google Scholar 

  14. Olive, X., et al.: OpenSky report 2020: analysing in-flight emergencies using big data. In: 2020 AIAA/IEEE 39th Digital Avionics Systems Conference (DASC), pp. 1–10 (2020)

    Google Scholar 

  15. Pamplona, D.A., Weigang, L., de Barros, A.G., Shiguemori, E.H., Alves, C.J.P.: Supervised neural network with multilevel input layers for predicting of air traffic delays. In: 2018 International Joint Conference on Neural Networks (IJCNN), pp. 1–6 (2018)

    Google Scholar 

  16. Peters, J., Emig, B., Jung, M., Schmidt, S.: Prediction of delays in public transportation using neural networks. In: International Conference on Computational Intelligence for Modelling, Control and Automation and International Conference on Intelligent Agents, Web Technologies and Internet Commerce (CIMCA-IAWTIC’06), vol. 2, pp. 92–97 (2005)

    Google Scholar 

  17. Post, J.: The next generation air transportation system of the United States: vision, accomplishments, and future directions. Engineering 7(4), 427–430 (2021). https://www.sciencedirect.com/science/article/pii/S209580992100045X

  18. Schäfer, M., Strohmeier, M., Lenders, V., Martinovic, I., Wilhelm, M.: Bringing up OpenSky: a large-scale ADS-B sensor network for research. In: IPSN-14 Proceedings of the 13th International Symposium on Information Processing in Sensor Networks, pp. 83–94 (2014)

    Google Scholar 

  19. Sciancalepore, S., Alhazbi, S., Di Pietro, R.: Reliability of ADS-B communications: novel insights based on an experimental assessment. In: Proceedings of the 34th ACM/SIGAPP Symposium on Applied Computing. SAC ’19, pp. 2414–2421. Association for Computing Machinery, New York (2019). https://doi.org/10.1145/3297280.3297518

  20. Shi, Z., Xu, M., Pan, Q., Yan, B., Zhang, H.: LSTM-based flight trajectory prediction. In: 2018 International Joint Conference on Neural Networks (IJCNN), pp. 1–8 (2018)

    Google Scholar 

  21. Skolnik, M.I.: Introduction to Radar System, 3rd edn. Mcgraw-Hill College, New York (1962)

    Google Scholar 

  22. Smith, A., Cassell, R., Breen, T., Hulstrom, R., Evers, C.: Methods to provide system-wide ADS-B back-up, validation and security. In: 2006 IEEE/AIAA 25th Digital Avionics Systems Conference, pp. 1–7 (2006)

    Google Scholar 

  23. Stevens, M.C.: Secondary Surveillance Radar. Artech House, Norwood (1988)

    Google Scholar 

  24. Strohmeier, M., Lenders, V., Martinovic, I.: On the security of the automatic dependent surveillance-broadcast protocol. IEEE Commun. Surv. Tutor. 17(2), 1066–1087 (2015)

    Article  Google Scholar 

  25. Strohmeier, M., Schäfer, M., Lenders, V., Martinovic, I.: Realities and challenges of NextGen air traffic management: the case of ADS-B. IEEE Commun. Mag. 52(5), 111–118 (2014)

    Article  Google Scholar 

  26. Willis, N.J.: Bistatic Radar, 2nd edn. Artech House, Norwood (1995)

    Google Scholar 

  27. Yang, A., Tan, X., Baek, J., Wong, D.S.: A new ADS-B authentication framework based on efficient hierarchical identity-based signature with batch verification. IEEE Trans. Serv. Comput. 10(2), 165–175 (2017)

    Article  Google Scholar 

Download references

Acknowledgment

The ADS-B data are supported by the Electronic Navigation Research Institute (ENRI) with which we have research collaboration. The authors would like to thank ENRI for their assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Makoto Ikeda .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Matsuo, K., Ikeda, M., Barolli, L. (2022). A ML-Based System for Predicting Flight Coordinates Considering ADS-B GPS Data: Problems and System Improvement. In: Barolli, L., Kulla, E., Ikeda, M. (eds) Advances in Internet, Data & Web Technologies. EIDWT 2022. Lecture Notes on Data Engineering and Communications Technologies, vol 118. Springer, Cham. https://doi.org/10.1007/978-3-030-95903-6_20

Download citation

Publish with us

Policies and ethics